
FACULTY OF ENGINEERING

Data Mining and Neural
Networks Report

Moritz Wolter

Contents

1 Introduction 2
1.1 Approximation of noiseless function data 2
1.2 The role of the hidden and output layer. 4

1.2.1 Linear regression . 4
1.2.2 Approximating Sine . 4

1.3 Function approximation (noisy case) . 6
1.3.1 Variation of the noise variance . 6
1.3.2 Different sized inputs . 6
1.3.3 The size of the hidden layer . 7
1.3.4 Different training algorithms . 7
1.3.5 Early stopping . 8
1.3.6 Regularization . 8
1.3.7 Impact of the initial condition . 9

1.4 Curse of dimensionality . 9

2 Santa Fe, characters and diabetes 12
2.1 Santa-Fee data Set . 12

2.1.1 Variation of the training algorithm and architecture 12
2.1.2 Committee network prediction . 16
2.1.3 Variation of input vector composition 16
2.1.4 Other variations . 18

2.2 Alphabet recognition . 18
2.3 Prima Indians Diabetes . 20

3 Dimension reduction and input selection 22
3.1 Dimension reduction by principal component analysis 22
3.2 Input selection and automatic relevance detection 24

3.2.1 demev . 24
3.2.2 demard . 25
3.2.3 Ionospere data Set . 26

4 Density estimation and self organizing maps 30
4.1 Density Modeling and Clustering . 30

4.1.1 The expectation maximization algorithm 30
4.1.2 Gaussian mixture models with spherical,diagonal and full covariance 31

4.2 Self-organizing maps (SOM) . 31
4.2.1 The Iris dataset . 34

2

CONTENTS 1

4.2.2 The burpa dataset . 34

5 Support vector machines 39
5.1 Vapnik Support vector machines . 39
5.2 Least-squares support vector machines . 44

5.2.1 LS-SVM - Diabetes classification 44
5.2.2 LS-SVM - Santa Fee prediction . 44

Session 1

Introduction

1.1 Approximation of noiseless function data

In this first exercise noiseless functions of various complexities will be approximated, as
shown in figures 1.1,1.2 and 1.3. Figure 1.1 depicts the under-fitting case, with termination
at a local optimum or after the maximum number if iterations is reached. In 1.2 where
the amount of hidden neurons is increased to two, the solver does sometimes reach a state
close to the global optimum, as shown on the left. In other cases, when the random initial
condition is not as favorable, the optimization process terminates in a local optimum
as shown on the right. If the number of hidden neurons is increased, the process will
terminate somewhere close to the global solution more frequently. This is due to the fact
that for harder nonlinear problems more hidden neurons enable the network to capture
the nonlinearities better. On the other hand additional neurons also increase the chance
of over-fitting as shown in figure 1.3. Here a neural network with 9 hidden layers is trained
to fit to an almost linear function. In comparison to the estimation results with only one
hidden neuron, the additional neurons cause strong oscillations. An overview of the feel
of network performance based on the authors perception is given in table 1.1.

F
u
n
ct
io
n
d
iffi

cu
lt
y

Number of hidden neurons
1 2 3 4 5 6 7 8 9

1 good fair fair fair bad bad bad bad bad
2 bad good fair fair fair fair bad bad bad
3 bad fair good fair fair fair fair bad bad
4 bad bad fair good fair fair fair fair bad
5 bad bad bad fair good good good good fair
6 bad bad bad fair fair good good good good
7 bad bad bad bad fair fair good good good
8 bad bad bad bad bad fair fair good good
9 bad bad bad bad bad bad fair fair good

Table 1.1: Approximation quality as based on the subjective judgment of the author when
using nnd11gn.

2

SESSION 1. INTRODUCTION 3

−2 −1 0 1 2
0

0.5

1

1.5

2

Input

T
ar
ge
t

Function Approximation

−2 −1 0 1 2
0

0.5

1

1.5

2

Input

T
ar
ge
t

Function Approximation

Figure 1.1: Difficulty level 5 noiseless function approximation using two hidden neu-
rons, optimization terminates in local optimum (left), and after the iteration maximum
is reached (right).

−2 −1 0 1 2
0

0.5

1

1.5

2

Input

T
ar
ge
t

Function Approximation

−2 −1 0 1 2
0

0.5

1

1.5

2

Input

T
ar
ge
t

Function Approximation

Figure 1.2: Difficulty level 5 approximation using three hidden neurons, optimization
terminates in global optimum (left), and in a local optimum (right).

−2 −1 0 1 2
0

0.5

1

1.5

2

Input

T
ar
ge
t

Function Approximation

−2 −1 0 1 2
0

0.5

1

1.5

2

Input

T
ar
ge
t

Function Approximation

Figure 1.3: Difficulty level 1 function approximation with 9 hidden neurons (left) and one
neuron (right).

SESSION 1. INTRODUCTION 4

1.2 The role of the hidden and output layer.

1.2.1 Linear regression

As a second example the use of a neural net to solve a linear regression is problem is
considered. The output pattern to be modeled is given by

yp = ω1x1,p + ω2x2,p + ω3x3,p + · · ·+ ωnxn,p + β. (1.1)

The parameters {ωi}n1 are to be determined from solving the optimization problem

min
ω,β

P∑
p=1

(yp)− (ω1x1,p + ω2x2,p + ω3x3,p + · · ·+ ωnxn,p + β)2. (1.2)

This may be done from a neural networks point of view using

y = σ(ωTx+ β). (1.3)

With the activation function sigma just being the linear σ(x) = x. The corresponding
optimization problem, which yields the neuron weights is

min
ω,β

(yp − y)2. (1.4)

Which leads back to equation 1.2 as desired. In order to solve this problem a single neuron
is sufficient. In this special case no hidden layers exist and the input layer is at the same
time the output layer, as shown in the McCulloch-Pitts model in the course text on page
21.

1.2.2 Approximating Sine

Next the performance of the network architecture outline above is tested on

yp = sin(0.7πxp) (1.5)

with xp ∈ [0, 1]. A plot of relation 1.5 and the output values generated by a linear
network trained on this data set is given in figure 1.4. The network is unable to capture
the behavior of the sine properly. Generally the sine can only be assumed to be linear
for very small angles. When x ∈ [0, 1] this small angle approximation is no longer valid.
Adding a hidden layer with two neurons to the network enables it to deal well with the
nonlinearity of the sine.

Figure 1.5 shows the output of the two hidden layer elements, which are colored in red
and yellow. The blue curve indicates the network output. The blue neuron produces the
corresponding signal. In the arrows are labeled with their weights using the notation used
in matlab Function Fitting Neural Network objects. Hyperbolic tangents serve as
activation functions to the two hidden elements. After training the network and extracting
the weights the functions shown in figure 1.5 can be produced by the matlab code snippet:

h1out = tanh (IW(1)∗ x + hb (1)) ;
h2out = tanh (IW(2)∗ x + hb (2)) ;
output = LW(1)∗ h1out + LW(2)∗ h2out + ob ;

SESSION 1. INTRODUCTION 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 1.4: Linear net performance on equation 1.5. With the blue line showing the sine
function. The output of the linear network is shown by red stars. The output of the net
containing a hidden layer with two neurons is shown in yellow.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Figure 1.5: Network architecture and corresponding output. The color of the neuron
outputs corresponds to their color in the layout. The red crosses indicate target function
points.

SESSION 1. INTRODUCTION 6

−1 −0.5 0 0.5 1
−4

−2

0

2

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1

−1

0

1

Figure 1.6: Approximation of a noisy sinusoidal signal using 100 data points and 5 hidden
neurons. The noise is normal distributed with decreasing variance according to N (0, 12),
N (0, 0.52) and N (0, 0.12) from left to right. The blue stars show the noisy training and
validation data. The noise free target function is shown in yellow, while the neural network
approximation is shown in orange.

−1 −0.5 0 0.5 1
−4

−2

0

2

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
−4

−2

0

2

Figure 1.7: Approximation of a noisy sinusoidal signal with noise distribution N (0, 12).
The number of input data points has been increased from 100 on the left to 200 in the
middle and finally 1000 on the right.

1.3 Function approximation (noisy case)

1.3.1 Variation of the noise variance

Figure 1.6 shows the approximation results of a network with one hidden layer containing
five elements. 100 data points have been used. The standard deviation of the normally
distributed noise decreased from σ = 1 to σ = 0.5 and finally to σ = 0.1. The figure
reveals that the fit improves as the noise variance decreases.

1.3.2 Different sized inputs

In the series of plots shown in figure 1.7, the number of input points has been increased
from 100 to 200 and finally to 1000. It can be observed that if the input data is split
evenly into training and validation data points, the more data is available the better the
network is able to approximate the function. This can be seen as a manifestation of the
law of large numbers.

SESSION 1. INTRODUCTION 7

−1 −0.5 0 0.5 1

−2

0

2

4

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
−4

−2

0

2

4

Figure 1.8: Approximation of a noisy sinusoidal signal with noise distribution N (0, 12).
In the experiments shown ,the number of neurons has been increased from 3 to 5 and
finally to 10 from left to right.

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1
−4

−2

0

2

−1 −0.5 0 0.5 1

−2

0

2

4

Figure 1.9: Neural network output using different optimization algorithms during the
training process. Scaled conjugate gradient (shown left), Levenberg-Marquardt (middle)
and BFGS quasi-Newton (right) backpropagation versions have been used to approximate
the noisy sinusoid.

1.3.3 The size of the hidden layer

Figure 1.8 shows network outputs to the same input data. The plotted response data
has been computed using different sigmoid numbers in the hidden layer. The number of
perceptrons has been increased from three to five and finally to 10. For three neurons the
network is not able to cope with the complexity of the sinusoid. With 5 neurons it works
well. Overfitting can be seen for 10 hidden elements, the effect is particularly pronounced
due to the added capacity for noise tracing of the more complex network.

1.3.4 Different training algorithms

In figure 1.9 network outputs from networks trained using different optimization algo-
rithms are shown. Due to the random nature of the sulutions it is hard to draw conclu-
sion about their performance, but it seems that the Levenberg-Marquardt method suffers
more from the noise in comparison to the other two methods. In general the scaled gra-
dient descent algorithm is a good choice for large networks. Levenberg-Marquardt and
BFGS quasi-Newton methods are suitable for medium sized networks due to their memory

SESSION 1. INTRODUCTION 8

−1 −0.5 0 0.5 1
−4

−2

0

2

4

0 2 4 6 8 10
10−1

100

101

er
ro
r

Train
Validation
Best

Figure 1.10: The plot on the left shows the optimal fit when using early stopping. On
the right the mean squared error is plotted in relation to the optimization iterations or
epochs.

−1 −0.5 0 0.5 1

−4

−2

0

2

4

−1 −0.5 0 0.5 1

−2

0

2

−1 −0.5 0 0.5 1

−2

0

2

Figure 1.11: Neural network performance using regularization parameters v = 0.25, v =
0.05 and v = 0.01.

requirements and computational overhead. 1

1.3.5 Early stopping

In order to tackle over-fitting resulting from running the learning process too long, early
stopping is used. The process is shown in figure 1.10. Using the validation data the
number of iterations is determined after, which the learning process is mainly concerned
with memorizing noise contributions. This can be detected by looking at the fit to the
validation data set. As soon as the validation error begins to rise, the training is stopped.
2

1.3.6 Regularization

When thinking about regularization it is helpful to consider the eigenvalue representation
of the Hessian Huj = λjuj. When the gradient of the regularized problem is formulated

1Matlab 2015b documentation
2The effect can best be seen in a video like the one at https://youtu.be/by8eFWhsvlM where at

about 0.75 the network gets drawn to some misleading noisy points.

https://youtu.be/by8eFWhsvlM

SESSION 1. INTRODUCTION 9

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

Figure 1.12: Approximation of the noise free function from equation 1.7 in one dimension
using a neural net with one hidden layer containing 10 neurons.

and the definition for the regularization parameter is plugged in.3 The expression

ω̃ =
λj

λj + v
ω (1.6)

is obtained. Which relates the regularized form of the weights ω̃ and the original pa-
rameters of the problem ω. It follows from equation 1.6 that filtering takes place for
eigenvalues λ < v. This fact explains the plots shown in figure 1.11, for v = 1 too many
eigencomponents are filtered. This leads to the heavily damped network output shown
on the left. Optimal damping shown in the middle leads to good tracking of the solution.
Where not enough damping is applied in the right, here the network starts to track the
noise.

1.3.7 Impact of the initial condition

Depending on the choice of the weights the training process is started with, the opti-
mization algorithms used to teach the network will terminate in different local minima.
In order to avoid a particularly bad one it is always a good idea to repeat the training
process with several different initial conditions.

1.4 Curse of dimensionality

In this last section of this report. The noise free hat function

f(x) = sinc(

√√√√ m∑
i=1

x2
i) (1.7)

is considered. Its output will be computed in one dimension m = 1 in two dimensions
m = 2 and finally in five dimensions m = 5. Function output and network approximation
in one dimension is shown in figure 1.12. However in two dimensions the picture changes.
Figures 1.13 and 1.14 show the original hat function as well as approximations using
different network architectures. Namely 10, 100 perceptrons as well as an MLP with
50 perceptrons in two hidden layers have been trained. As the increase from 10 to 100

3Suykens, Data Mining and Neural Networks, Cursustekst page 91.

SESSION 1. INTRODUCTION 10

−5
0

5

−5

0
5

0

1

−5

0

5

−5
0

5
−0.1

0

0.1

Figure 1.13: Original hat function and neural network approximation using 10 perceptrons
in one hidden layer.

−5
0

5

−5

0
5

0

1

−5
0

5

−5

0
5

0

1

Figure 1.14: Surface plots of two dimensional hat function approximations using 100
elements in one hidden layer and two hidden layers containing 50 neurons each.

neurons increases the qualtiy of the approximations, but even more effective is the split
in two hidden layers. This is probably due to the added level of abstraction, that comes
with two hidden layers, as the second layer can build upon decisions made by the previous
layer. The images above have been computed using a grid ratio of 100 points. In five
dimensions this is impossible as this would require 100x100x100x100x100≈74.5GB of
memory, to lay out the complete grid in five dimensions. Of course fewer random points
could be considered, but in this report the resolution will be decreased to 20 points, which
allows it to train the networks on esat’s vierre64 in all dimensions results are shown in
table 1.2. The errors are computed using

norm(f(x)−N(x))

norm(f(x))
(1.8)

with N(x) describing the network output. The key to the ability of neural networks to

[10] [100] [50 50]

R1 1.5425 1.5818 0.6320
R2 0.9916 0.7167 0.3340
R5 1.0000 1.0005 1.0005

Table 1.2: Error norm of network approximations using various Architectures of functions
of different dimensions.

SESSION 1. INTRODUCTION 11

deal with high dimensional data is their ability to cope with added complexity trough
rearrangement of their neurons is more layers, which allows to incorporate information
generated in the previous layer. According to Barron the approximation error becomes
independent of the dimension of the input space. Which is visible in table 1.2.

Session 2

Santa Fe, characters and diabetes

2.1 Santa-Fee data Set

In this first section time series prediction of Santa-Fee laser data is considered. The
data set is obtained from a chaotic laser, which can be described as a nonlinear dynamic
system. A training data with 1000 points is available to teach the network. Network
performance will then be evaluated using a second prediction data containing 100 mea-
surements. A neural network type suited for this kind of task are nonlinear autoregressive
neural networks (narnet),

ŷk+1 = ωT tanh(V [yk; yk−1; . . . ; yk−p] + β) (2.1)

Training is done in feedforward mode, which means that the network is in an open loop
form. A layout of a narnet is shown in figure 2.1. To obtain predictions the network is
used in a closed loop form such as the one shown in figure 2.2,

ŷk+1 = ωT tanh(V [ŷk; ŷk−1; . . . ; ŷk−p] + β) (2.2)

which means that the when a new prediction is made the network uses the predictions
it has made earlier. However the success of predicting a chaotic system is limited by
the Liapunov exponent. Even if the exact equations governing the system are known
chaotic systems are extremely sensitive to small errors made during simulation or in the
initial conditions. These systems thus become unpredictable after a while. The Liapunov
exponents tell something about the speed of which nearby trajectories of these systems
diverge.1

2.1.1 Variation of the training algorithm and architecture

The available data points are randomly split into three lets training, validation and testing
data. 70% are used for learning 15% for validation and finally the last 15% are set aside
for testing. To avoid over-fitting early stopping will be used where applicable. In a first
series of experiments the network design as well as the training methods will be varied.
A network with 25 neurons and a delay of up to 10 using Levenberg-Marquardt has been
trained. Fit to the training set and prediction results are shown in figure in figure 2.1.

1Strogatz, Nonlinear dynamics and chaos, page 328.

12

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 13

Figure 2.1: Layout of a NAR-Network as used for training purposes. With 10 hidden
neurons and a delay of up to ten.

Figure 2.2: Layout of a closed NAR-Network as used for Santa-Fee data prediction.

0 200 400 600 800 1,000
0

100

200

300

0 20 40 60 80 100
−200

−100

0

100

200

300

Figure 2.3: Narnet training and prediction results using Levenberg-Marquardt optimiza-
tion for training. On the teaching set (left) and the prediction set(right). A delay of up to
10 and 25 neurons have been used. The yellow dots in the right plot show the prediction
error.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 14

1:5 1:10 1:15 1:20 1:25
5 42.2161 42.4455 30.0852 39.0152 31.6155
10 4.3969 1.5416 2.8276 1.9532 3.9595
15 4.3253 6.0990 12.0325 5.6509 5.7458
20 21.6387 13.5835 6.1929 7.7123 33.2702
25 2.8752 37.0352 27.9921 21.3609 43.7254

Table 2.1: Mean square error training results using Levenberg-Marquardt backpropaga-
tion.

1:5 1:10 1:15 1:20 1:25
5 65.0282 100.2380 65.7871 57.1775 57.6770
10 20.5488 31.4121 42.0676 69.2126 48.0599
15 209.1161 31.4038 91.4464 109.1161 132.3640
20 216.9201 117.7800 176.0053 156.6302 144.4203
25 136.9215 120.0195 186.6929 191.6889 109.0894

Table 2.2: Mean square error training results using scaled conjugate gradients backprop-
agation.

1:5 1:10 1:15 1:20 1:25
5 148.4969 109.3668 90.5823 70.8898 82.2559
10 145.6481 69.4386 53.9265 51.2311 86.7384
15 140.6406 97.8695 86.4476 93.9755 149.2024
20 118.6825 128.1096 140.2982 83.5727 103.7802
25 127.0186 108.6949 116.1468 102.0313 80.5941

Table 2.3: Mean square error training results using resilient backpropagation.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 15

1:5 1:10 1:15 1:20 1:25
5 0.3351e+05 0.5545e+05 0.0318e+05 0.3218e+05 0.2051e+05
10 0.0455e+05 0.0598e+05 0.5356e+05 0.4324e+05 0.1104e+05
15 0.0480e+05 0.2530e+05 0.0770e+05 0.7009e+05 0.5540e+05
20 1.2492e+05 0.0696e+05 0.0348e+05 0.1640e+05 0.0397e+05
25 0.1298e+05 0.0520e+05 0.2104e+05 0.5399e+05 0.0316e+05

Table 2.4: Mean square error prediction results using Levenberg-Marquardt backpropa-
gation .

1:5 1:10 1:15 1:20 1:25
5 0.0526e+05 0.1181e+05 0.1035e+05 0.6929e+05 0.4785e+05
10 0.0297e+05 0.0477e+05 1.2537e+05 0.0662e+05 0.2448e+05
15 0.0261e+05 0.0650e+05 0.1148e+05 0.0854e+05 0.0772e+05
20 0.0243e+05 0.0196e+05 0.1296e+05 0.0384e+05 0.0405e+05
25 0.0358e+05 0.0230e+05 0.0556e+05 0.0156e+05 0.0128e+05

Table 2.5: Mean square error prediction results using conjugate gradients backpropaga-
tion.

1:5 1:10 1:15 1:20 1:25
5 0.3940e+04 0.2721+04 0.3880+04 4.6165+04 0.5927+04
10 0.2960e+04 0.3564+04 0.2636+04 0.5647+04 0.2954+04
15 0.9006e+04 0.2586+04 0.5702+04 0.3491+04 0.3793+04
20 0.4404e+04 0.4345+04 0.1902+04 0.3166+04 0.4772+04
25 0.3467e+04 0.3220+04 0.4072+04 0.7259+04 0.2003+04

Table 2.6: Mean square error prediction results using resilient backpropagation.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 16

In this case the network layout was just a wild guess, can it be chosen in a more
structured manner? Tables 2.1 to 2.3 show the fit of networks with delays ranging from
5 to 25 and hidden neural numbers increasing from 5 to 25 as well. I both cases steps of
5 are used. Looking at the quality of fit for all training algorithms the most promising
values are often found in the center of the table somewhere between a delay of up 10 or
20, with a similar amount of neurons. A problem when attempting to compare network
architectures is that the training process ends up in different local minima. As a small
remedy for this issue 15 networks have been trained for every delay,hidden layer size
and algorithm combination and the best fit to training data has been selected. The
more important quantity is the fit of the predictions. The results for different layouts
and training strategies are shown in tables 2.4 to 2.6. Unfortunately no obvious link
between training data performance and prediction success can be established using the
data collected for this report. For example the network 1:25,25 trained using conjugate
gradients has the lowest prediction mean squared error, but its fit to the training data
was relatively bad. In addition produce the networks trained using Levenberg-Marquardt
backpropagation no better prediction results in comparison to the other algorithms, even
tough the LM trained networks did fit the training data better in terms of mean square
error. In a note of caution it should be added that if the training mse is very large the
prediction results will be very bad as well. However such cases have been filtered out by
training several networks for each combination and only selecting the good fits.

2.1.2 Committee network prediction

Two networks with prediction mean square error 1.2213e+05 (left) and 4.8843e+03 (right)
are shown in figure 2.4. Considering the mse alone one would be inclined to call the right
network the better one. But a closer look at their output signal reveals that it got the last
peak one which the right network predicted correctly. Additionally the right net does not
produce an event after which the peak hight and frequency changes, the right network
does but gets it completely wrong. However by not producing the event its output signal
is on average closer to the true values. What happens if 100 networks are trained and
their output is averaged can be seen in figure 2.5. The mean square error of the average
prediction is 19.6963 in this case!

2.1.3 Variation of input vector composition

When looking at the input data the value of data region can be judged by it’s autocor-
relation. A autocorrelation plot of the lasertrain data set is given in figure 2.6 on the
left. The plot reveals that values found between sample 150 and 250 are not strongly
correlated to the rest of the data. The autocorrelation of the smaller cut dataset is shown
on the right. To evaluate the effect of cutting out the data once more 100 networks have
been trained on the new smaller data set. Their averaged output is shown in figure 2.7.
The result is still a meaningful prediction however significant error appear earlier. The
mean square or the error increases to 68.4841 from about 20.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 17

0 20 40 60 80

−500

0

500

0 20 40 60 80

0

100

200

300

Figure 2.4: Prediction outputs of two different networks, using delays 1 . . . 10 and 25
hidden neurons.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

Figure 2.5: Averaged output signal of 100 networks.

0 100 200 300

−0.5

0

0.5

1

Lag

S
am

p
le

A
u
to
co
rr
el
at
io
n

0 100 200 300

−0.5

0

0.5

1

Lag

S
am

p
le

A
u
to
co
rr
el
at
io
n

Figure 2.6: Autocorrelation of the lasertrain data set (left). On the right the autocor-
relation of the shortened version of the signal is shown.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 18

0 10 20 30 40 50 60 70 80 90
0

100

200

300

Figure 2.7: Average prediction of 100 networks trained on the shortened data set.

2.1.4 Other variations

Using regularization does not improve matters significantly. If the parameter governing
the extend of the regularization is chosen too large it makes matters considerably worse.
This is the case, because this is not an identification problem where noise has to be
eliminated, so the smooting effect regularization has either does not matter or eliminates
useful information. Changing the hidden layer transfer functions to tangent or logarithmic
from the default hyperbolic tangent also did not yield any improvements.

2.2 Alphabet recognition

Using data where each letter of the alphabet is a vector of 35 values which can either be
1 or 0. Then Each vector of 35 values defines a 5x7 bitmap of a letter. A target data set
contains the actual letter which are contained in the data matrix. In the matlab script
appcr1 two neural networks are trained. Both networks share the architecture shown in
figure2.8. It has 35 inputs as each letter is represented as a vector of 35 bitmap values.
The 25 hidden neurons are used for recognition. Finally 26 output neurons are used where
each corresponds to the network recognizing a particular letter. The first network is only
given noise free version of the letters it is supposed to learn to recognize, such as the A
shown in figure 2.9 on the left. A second network is trained with noisy versions of the
same data, as shown in figure 2.9 on the right. Instead of just one noise free version of
each letter the second network is given 30 noisy version of each character. It is trained
with more data in the presence of noise. After the training process the performance of
both networks is evaluated as shown in figure 2.10. The network trained in the presence of
noise does perform better on noisy and noise free data. The performance of the network
that did not see noise during the training process has a harder time dealing with it, despite
the fact that its architecture is the same. Even tough the second network saw data of
poor quality it can perform better, because it had a larger training data set then the first
network. For training networks it can thus be concluded that the bigger the data the
better. An ideal network would have been trained with noisy and noise free data.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 19

Figure 2.8: Architecture of the two networks trained for the letter recognition this exper-
iment.

Figure 2.9: A noise free (left) and noisy (right) version of the letter A.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Noise Level

E
rr
or
s

Percentage of Recognition Errors

Network 1
Network 2

Figure 2.10: Network performance of networks trained in the presence and absence of
noise.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 20

0 2 4 6 8 10 12
10−1

100

12 Epochs

M
ea
n
S
q
u
ar
ed

E
rr
or

(m
se
)

Best Validation Performance is 0.1566 at epoch 6

Train
Validation
Test
Best

Figure 2.11: MLP performance during the Training process on the training, validation
and test sets.

2.3 Prima Indians Diabetes

The diabetes data set contains 8 data points per person. Using these values, which could
be for example blood pressure, hight, weight, etc. Using this data set and a vector which
classifies the individuals in the data set into a healthy and unhealthy group, a neural
network will be trained to identify individuals with diabetes. A total of 768 humans is
included in the data of which 268 have diabetes (34.1 %). Matlab’s patternnet networks
will be used to solve this problem. These nets are specialized for applications in pattern
recognition and can be trained to classify inputs according to target classes. Before the
network is trained the target vector is remapped to contain a zeros for healthy individuals
and a 1 for persons with diabetes. Again 70% of the data are used for learning process,
wile 30% will be split evenly among training and testing data. The evolution of the
mean square error during the learning phase is shown in figure 2.11. The training process
is stopped, when the classification error on the validation data is observed to rise. A
detailed picture of the classification results of the network is shown in the confusion
matrix in figure 2.12. On surprisingly the performance is best on the training data. On
the validation and test data the correct classification various roughly between 77 and 74%.
A slightly better result has been achieved using lest squares support vector machines in
the last session.

SESSION 2. SANTA FE, CHARACTERS AND DIABETES 21

0 1

0

1

450
58.6%

50
6.5%

90.0%
10.0%

115
15.0%

153
19.9%

57.1%
42.9%

79.6%
20.4%

75.4%
24.6%

78.5%
21.5%

Target Class

O
u
tp
u
t
C
la
ss

All Confusion Matrix

0 1

0

1

66
57.4%

7
6.1%

90.4%
9.6%

20
17.4%

22
19.1%

52.4%
47.6%

76.7%
23.3%

75.9%
24.1%

76.5%
23.5%

Target Class

O
u
tp
u
t
C
la
ss

Test Confusion Matrix

0 1

0

1

70
60.9%

11
9.6%

86.4%
13.6%

19
16.5%

15
13.0%

44.1%
55.9%

78.7%
21.3%

57.7%
42.3%

73.9%
26.1%

Target Class

O
u
tp
u
t
C
la
ss

Validation Confusion Matrix

0 1

0

1

314
58.4%

32
5.9%

90.8%
9.2%

76
14.1%

116
21.6%

60.4%
39.6%

80.5%
19.5%

78.4%
21.6%

79.9%
20.1%

Target Class

O
u
tp
u
t
C
la
ss

Training Confusion Matrix

Figure 2.12: Classification results on the training, validation and test set as well as
combined.

Session 3

Dimension reduction and input
selection

3.1 Dimension reduction by principal component anal-

ysis

In this section blood sample data will be preprocessed using principal component anal-
ysis. The 21x264 input matrix contains twenty-one spectral measurements of 264 blood
samples. A network will be trained to identify the levels of three types of cholesterol
LDL, VLDL, HDL from the sampled data. The target data is stored in a 3x264 matrix.
The dimension reduction process starts by computing the covariance matrix of the given
data. A whitened version of the problem which is easier to handle is found trough an
eigenvalue decomposition. In order to reduce the dimension only eigenvalues and corre-
sponding eigenvectors larger then a certain threshold value (i.e. 0.001) are selected. The
new problem is then given by

z = UT
truncx. (3.1)

where UT
trunc denotes the eigenvector matrix with vectors corresponding to eigenvalues

above the cutoff value. Figure 3.1 shows a plot of the squared and normalized diagonal
of the singular matrix and the treshold which separates used and neglected values from
each other. For numerical reasons the singular value decomposition of the raw data is
preferred over the eigendecomposition of the covariance matrix. Due to the choice of the
cutoff value in this case the dimension is reduced from 24 to 4. In order to assess the
effect of dimensionality reduction networks will be trained on the normalized data and
on inputs that have been reduced as well as normalized. In any case the 264 available
data points are evenly split into training and validation/testing data-points. Using the
data points 1, 3, 5 . . . 263 as training data, the values at 2, 6, 10 . . . 262 as test and finally
the points at 4, 8, 12 . . . 264 as validation data. Thus 50% of the data is used for training
purposes, while 25% each is used for validation and testing. Using the data distribution
outlined above a network as shown in figure 3.2 on the left with 5 hidden neurons has
been trained. With the same amount of hidden neurons the process has been repeated
for the data of reduced dimension. In order to avoid over-fitting early stopping is used.
An exemplary training process using Levenberg-Marquardt is shown in figure 3.3 on the
right. In order to avoid over fitting the training process is stopped, when a mean square
error minimum on the validation data set is reached. The test data set serves as a backup

22

SESSION 3. DIMENSION REDUCTION AND INPUT SELECTION 23

0 5 10 15 20 25

10−7

10−5

10−3

10−1

#σ

σ
2 i
/
∑ σ

2

Figure 3.1: A plot of the condition used in the dimension reduction process. Eigenvalues
and corresponding eigenvectors of the covariance matrix smaller then a given threshold
are cut.

Figure 3.2: Architecture of the cholesterol prediction network trained on the normalized
data (left) and layout of the one trained on the reduced and normalized data(right).

0 5 10 15 20 25
10−1

100

101

102

25 Epochs

M
ea
n
S
q
u
ar
ed

E
rr
or

(m
se
)

Train
Validation
Test
Best

0 50 100 150 200 250
10−1

100

101

299 Epochs

M
ea
n
S
q
u
ar
ed

E
rr
or

(m
se
)

Train
Test
Best

Figure 3.3: Performance plots of training results using Levenberg-Marquardt and Bayesian
regularization backpropagation training. On the left the best validation performance is
0.49627 at epoch 19 on the right it is 0.32417 at epoch 43.

SESSION 3. DIMENSION REDUCTION AND INPUT SELECTION 24

training mse validation mse training time [s]
LM normalized 0.3175 0.2852 0.0952
BR normalized 0.3098 0.2573 1.5644

LM normalized, reduced 0.3667 0.3326 0.0548
BR normalized, reduced 0.3462 0.2734 0.2906

Table 3.1: Each row shows the average performance as well as the mean training time
of 100 networks. The networks have been trained using Bayesian regularization and
Levenberg-Marquardt optimization.

to guard against poor division of training and validation data. If the mean square error
minimum is attained on the training data set on a significantly different location the data
should be split in a another manner. Table 3.1 reveals that dimension reduction reduces
training time at the cost of higher mean square errors, in both training and validation
data. Bayesian regularization works by minimizing the cost function

min
ω

M(w) = βED(w) + αEW (w) (3.2)

where ED is the squared error and EW the square of the network weigts. α and β are the
objective function parameters, where α regulates the importance of reducing the error
and β the penalty on the network weights. Keeping the weights small has a smooth-
ing or regularization effect on the network output. Minimizing the objective function
given above is equivalent to maximizing the posterior probability P (w|D,α, β,M)1, for a
given model M or in this case a network. Another look at table 3.1 shows that Bayesian
regularization produces better results then pure Levenberg-Marquardt backpropagation
training. This is due to the fact that Bayesian regularization, incorporates Occams ra-
zor. When comparing the probability that the observed data has been produced by a
given model2, or equivalently when the value of α is increased. Another issue with pure
Levenberg-Marquardt training is the choise of a suitable regularization parameter, which
is not necessary when a Bayesian approach is taken. However the pure LM training is
significantly faster then Bayesian regularization. Regularization can speed up the training
process significantly, in particular in combination with Bayesian regularization where the
training process can be completed about five times faster on average (in this example).
Bayesian regularization (trainbr) should be the algorithm of choice due to the better
prediction performance in this case.

3.2 Input selection and automatic relevance detec-

tion

3.2.1 demev

In the second experiment the file demev1.m is run. Here noise distributed according
to N (0.25, 0.022) serves as the input. The function is sampled along the input and an

1GAUSS-NEWTON APPROXIMATION TO BAYESIAN LEARNING, F. Dan Foresee* and Martin
T. Hagan, 1997 IEEE

2Cursustekst page 102

SESSION 3. DIMENSION REDUCTION AND INPUT SELECTION 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

Input

T
ar
ge
t

data
function
network
error bars

Figure 3.4: demev1 output.

additional disturbance distributed according to N (0, 0.12) is added. Next a network with
two layers and three hidden perceptrons is trained three times. After each iteration,
when the training process has reached its minimum, the cost function parameters are
re-estimated using a Gaussian approximation3

anew =
γ

2Ew

(3.3)

βnew =
N − γ

2Ed

. (3.4)

Where γ is a relative measure of how many of the model parameters are used to reduce the
error function and N gives the total number of parameters in the network. This training
estimation combination is probably also used in the trainbr function. Figure 3.4 shows
the result. The estimation works better where numerous data points are available. Error
bars are created by along one standart deviation from the mean which corresponds to the
network output.

3.2.2 demard

In a first experiment an automatic relevance detection demonstration file from the netlab4

toolbox called demard.m is executed. In the file a three different input random sets are
created. The first one is drawn from the uniform distribution scaled into [0, 1]. The
second set is a noisy version of the first. Gaussian noise with the distribution N (0, 0.022)
is added. The last set are values from the normal distribution N (0.5, 0.22) unrelated to
the other two sets. Therefore x1 is very relevant for estimating the target value, x2 is
somewhat important, yet x3 may be considered almost irrelevant. Next the targets are
found from sampling the function sin(2πx) at the points specified in the first input set
x1. In order to classify the relevance of the three input sets described above an multilayer
perceptron is trained and retrained repeatedly, each input-set is now assigned its own
hyperparameter αi. From these the relative importance of each input can be evaluated.

3Netlab, Algorithms for pattern recognotion, Ian Nabney page 346
4http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

SESSION 3. DIMENSION REDUCTION AND INPUT SELECTION 26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1
data
function
network

Figure 3.5: demard output.

In the case treated in the demar.m demo file the parameter values are:

α1 = 0.17555

α2 = 21.07742

α3 = 153182.97363

Which shows that during the optimization process the weight of the regularization term
increases as the input data becomes less relevant. An observation that is confirmed by
the two layered network weights

w =

−3.18149 1.10024
−0.24288 0.05027
0.00119 −0.00048

where the rows correspond to the different inputs. One observes that the greatest im-
portance is given to values coming from the first set of input values, some to the second
and always none to the third. Which aligns with the conclusions drawn from the hyper-
paremeter values. Thus the network correctly identified the first set as the most important.
Figure 3.5 shows the noise samples from the most important input set x1 as well as the
sampled function and its network approximation.

3.2.3 Ionospere data Set

In this subsection classification of the ionosphere data set will be undertaken. The UCI
machine learning repository5 describes the data set as :
”This radar data was collected by a system in Goose Bay, Labrador. This system consists
of a phased array of 16 high-frequency antennas with a total transmitted power on the
order of 6.4 kilowatts. See the paper for more details. The targets were free electrons in
the ionosphere. Good radar returns are those showing evidence of some type of structure
in the ionosphere. Bad returns are those that do not.”
The data set contains 351 data points and 33 inputs. In the following experiments will be
concerned with determining the most important inputs. Figure 3.6 shows the procedure

5https://archive.ics.uci.edu/ml/datasets/Ionosphere

https://archive.ics.uci.edu/ml/datasets/Ionosphere

SESSION 3. DIMENSION REDUCTION AND INPUT SELECTION 27

0 10 20 30
10−2

10−1

100

101

102

103

input

1/
α

net 1
net 2
net 3

0 10 20 30
10−2

10−1

100

101

102

input

‖w
‖

net 1
net 2
net 3

0 10 20 30
10−3

10−2

10−1

100

101

input

av
g(
1/
α
)

0 10 20 30
10−3

10−2

10−1

100

input

av
g(
‖w

‖)

Figure 3.6: Hyperparameter alpha and input layer weights. The top row the results for
three different networks trained are depicted. In the bottom row their average values and
exemplary cuttoff values are shown.

SESSION 3. DIMENSION REDUCTION AND INPUT SELECTION 28

10−3 10−2 10−1 100

1

2

3

4

5

cutoff values

cl
as
si
fi
ca
ti
on

E
rr
or

0 10 20 30
10−3

10−2

10−1

100

101

input

1/
α

Figure 3.7: Performance of a retrained committee of three networks when various different
cutoff values are used.

outlined in the previous section applied to the ionosphere classification problem. Three
networks with the same structure as in the previous experiment have been trained. In
order to select the most important inputs the inverse of the hyperparameter α and the
input weights are considered. The figure 3.6 shows that the obtained values resemble
each other. Ten times the input average weight is roughly the values of the inverse
parameter 1/α. In order to systematically asses the effect of neglecting inputs, the network
committee will be retrained while increasing the cutoff value for input neglection after
every training iteration. The cutoff values used are shown in figure 3.7 on the right.
The inputs that remain for every given cutoff value are tabulated in table 3.2. The
classification error in relation to the cutoff value is shown in figure 3.7 on the left. In
order to asses the classification error the comittee output has been run trough a sign

function, mapping positive values to 1 and negative ones to -1. Here on can observe that
it is possible to remove inputs until the cutoff value 10−1.822, where 20 inputs remain,
whitout significantly impeading the comittee performance. When even more inputs are
removed the performance decreases significantly.

SESSION 3. DIMENSION REDUCTION AND INPUT SELECTION 29

-2.6600 -2.3644 -2.0689 -1.7733 -1.4778 -1.1822 -0.8867 -0.5911 -0.2956 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3
4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 7
8 8 8 8
9 9
10 10 10 10 10 10 10
11 11 11 11 11 11
12 12 12 12 12 12
13 13 13 13 13 13
14 14 14 14 14
15 15 15 15
16 16 16 16 16
17 17 17 17 17 17 17
18 18 18 18 18 18
19 19 19 19 19
20 20 20 20 20 20 20 20
21 21 21 21 21 21
22 22 22 22 22 22 22 22
23 23 23 23
24 24 24 24 24
25 25 25 25 25
26 26 26 26 26 26 26 26
27 27 27 27 27
28 28 28 28 28 28
29 29 29 29 29 29 29
30 30
31 31 31 31 31 31 31
32 32
33 33 33 33 33 33 33

Table 3.2: Logarithms of the cutoff values as shown in figure 3.7 and corresponding inputs
fed into the network.

Session 4

Density estimation and self
organizing maps

4.1 Density Modeling and Clustering

4.1.1 The expectation maximization algorithm

The first experiment considered comes from the demgmm1.m file which is part of the Netlab
toolbox. In the experiment 40 data points in a 2-dimensional space are considered. These
points have been drawn from a mixture of 2 Gaussian distributions, with means (0.3,0.3)
and (0.7,0.7) respectively the common variance is 0.01. The challenge now is that the
two initial distributions are considered unknown. In such a case the distributions will be
recovered as precisely as possible using the expectation-maximization algorithm. Initially
a mixture model containing M components is defined,

p(x) =
M∑
j=1

P (j)p(x|j). (4.1)

In general the mixing coefficients are constrained
∑M

j=1 P (j) = 1 similarly for the compo-

nent density functions
∫
p(x|j)dx = 1 is used. The constraints guarantee that the model

represents a density function. When the algorithm starts no assignment of data points to
component distributions is available. It will have to be estimated iteratively. The steps
this algorithm follows are shown in figure 4.1. In a first step a new Gaussian mixture
model is created with their means initially assumed at (0.2,0.8) and (0.8,0.2) and a vari-
ance of 0.01 for both distributions, which turns out to be quite a poor initial guess. The
distributions are plotted as a circle of one standard deviation around their mean. The
following step is an expectation (E) step. During this step the points are assigned to the
distributions, which are part of the mixture model based on each distributions probability
to generate the data point under consideration. In figure 4.1 this step is shown by coloring
the data points according to the distribution, which is most likely to have generated it.
Red and blue are used for the two gaussians considered. Points which are equally likely
to belong to each of the available distributions are colored with a shade of purple mixing
both colors. Each expectation step is followed by a maximization (M)-step. During this
step the mean and variance of the distributions under consideration are re-estimated using

30

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 31

P (j) µx µy σ P (j) µx µy σ
0.2943 1.9941 3.4742 0.0415 0.3000 2.0000 3.5000 0.0400
0.2022 0.1395 1.9759 1.0499 0.5000 0 0 0.2500
0.5036 0.0306 0.0026 0.2451 0.2000 0 2.0000 1.0000

Table 4.1: EM approximation results for the spherical example(left) and the parameters
of the three distributions the data was sampled from(right).

the point assignments from the previous expectation step. In figure 4.1 convergence of in
total 9 EM cycles can be observed. However only the iterations 1,2, 7 and 10 are shown.

4.1.2 Gaussian mixture models with spherical,diagonal and full
covariance

In a similar experiment now three distributions are to be estimated. The EM-algorithm
converges nicely in ten iterations as shown in figure 4.2 and table 4.1. It estimates means,
variances and priors nicely. Further examples explore the EM-Algorithms ability to deal
with data covariance matrices of various forms. A spherical covariance matrix for example
means, that the diagonal entries are the same which will always lead to spherical shaped
plot ring of one standard deviation around the mean. If a diagonal covariance matrix is
chosen the entries on the diagonal do not have to be the same. This ellipsoid standard
deviation plots become possible. Last a full covariance matrix additionally allows it to
rotate the ellipsoids around the mean. In all examples the EM-Algorithm is able to find
good approximations for mean, covariance and priors.

4.2 Self-organizing maps (SOM)

Self organizing maps are a visualization tool for high dimensional data.1 To obtain a self
organizing map a distribution of high dimension is mapped to a grid, which is often two
by two. Self organizing maps compress information, while at the same time preserving
the most important topological and metric relationships. SOMs often consist of two
dimensional grids of nodes. The nodes are organized in such a way, that similar models
are close to each other.

The model vectors are updated according to the process below,

mi(t+ 1) = mi(t) + hc(x),i(x(t)−mi(t)). (4.2)

To find hc(x),i the winning model has to be used which may be found from

∀i‖x(t)−mc(t)‖ ≤ ‖x(t)−mi(t)‖ (4.3)

which is saying that one is primarily interested in using the one model, that is closest to
x(t). Therefore it is also called the winning model. If multiple winners occur, which is

1This paragraph is based on: The self-organizing map Teuvo Kohonen, Helsinki University of Tech-
nology, Neural Networks Research Centre, P.O. Box 2200, FIN-02015 HUT, Neurocomputing 21 (1998)
16

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 32

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Data

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Initial Configuration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
E-step

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
M-step

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
EM-step

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
EM-step

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
EM-step

Figure 4.1: Maximum likelihood fitting of a mixture of Gaussians to a data set, also called
EM (expectation-maximization).

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 33

−2 0 2
−2

0

2

4

−4 −2 0 2

0

2

4

Figure 4.2: Spherical Gaussian mixed model example.

possible for discrete-valued variables the winner should be selected at random. A simple
definition for the neighborhood function is

hhc(x),i = α(t) if ‖ri − rc‖ < c (4.4)

hhc(x),i = 0 else. (4.5)

Which means the we the neighbourhood is a set of points within a radius c. In order to
set up a batch map procedure the concept of the Voroni set is needed. It is the set of
those samples x(t) that lie closest to the model mi. Ni is the set of nodes within a certain
radius around node i in the array. The union of the Voroni sets Vi of to the nodes in Ni

is called Ui. Ultimately it containts the data values xi associated to the winning model
and those models close to it. The model can then be defined as an average

mi =

∑
x(t)∈Ui

x(t)

n(Ui)
(4.6)

where n(Ui) denotes the number of elements in Ui. The training procedure can then be
described by 2

1. Initialize the models mi. Random vectors will work, but the process is faster if
values from the data eigenspace are chosen.

2. Go trough the data points x(t), and list each one under its closest model mi.

3. Use mi =
∑

x(t)∈Ui
x(t)

n(Ui)
to update the models.

4. Loop from step two until a steady state is reached.

The result of the organization process can be seen in figure 4.3. The net clearly moves
into the data set it is supposed to represent. It initially resides within the plane x ∈
[−3, 3], y ∈ [−3, 3], throughout the training process it nicely expands to cover the whole
domain of the mexican hat function which resides in x ∈ [−5, 5], y ∈ [−5, 5]. Additionaly
the map is able to nicely emulate the behavior of the hat in the z domain. After training
the quantization error has decreased to q = 0.4 from q0 = 0.88.

2based on: The self-organizing map Teuvo Kohonen, Helsinki University of Technology, Neural Net-
works Research Centre, P.O. Box 2200, FIN-02015 HUT, Neurocomputing 21 (1998) 4

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 34

−5

0
5

−5

0

5

0

0.5

1

Data

−5

0

5−5
0

5
0

0.5

1

After initialization

−5

0
5

−5

0

5

0

0.5

1

BMU

After training

Figure 4.3: An example of the SOM organization process. Based on som demo1.m from
the som toolbox.

4.2.1 The Iris dataset

Yet a more important property of self organizing maps is their ability to visualize high
dimensional data. Using the UCI iris data set this will be illustrated in the upcoming
experiment .3 The iris data set consists of 50 samples from three different kinds of Iris
flowers. This the set contains 150 samples in total. For each sample the width and hight
of the sepal and petal leaves have been measured. The data set labes all the measurment
according to the name of each species, ”Setosa”, ”Versicolor” and ”Virginica”. Figure 4.4
shows that self organizing maps are able to distinguish the different kinds of plants from
another fairly well. Without knowing which plant would belong the which data point,
using the map it would have been at least possible to separate the ”Setosa” plants from
the others. Using a supervised training process the results are better. In figure 4.5 the
classification map is shown. The color bar shows the error on the different nodes. A
comparison to figure 4.4 shows that the nodes where the plant data is not mixed are
classified correctly.

4.2.2 The burpa dataset

The bupa dataset named after the donating company BUPA Medical Research Ltd.,
contains blood and alcohol consumption data from 345 men.4 For every set of data points
it is known whether a liver condition is present or not. 1 indicates a healthy liver, 2
points to the contrary. Figure 4.6 contains denormalized data plots for the U-matrix on
the very left and component planes for each measured value. It is important to note that
the U-matrix has more hexagons then the component planes, because distances are shown
in relation the neighboring cells. The component plane plots use lesser hexagons as they
only show absolute values. The component planes reveal that the two blood values sgpt
and sgot are highly correlated, both are somewhat correlated to the gammagt blood value.
The U-matrix can be divided in two regions a large plain at the top and a somewhat more

3https://archive.ics.uci.edu/ml/datasets/Iris
4http://archive.ics.uci.edu/ml/datasets/Liver+Disorders

https://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Liver+Disorders

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 35

6

2
3

4

2
4
6

Prototypes and data

Figure 4.4: An example of the SOM analysis of the UCI setosa dataset. On the left the two
dimensional visualization of the self organizing map. The colors indicate classification of
the different plant types red for ”Setosa”, green for ”Versicolor” and blue for ”Virginica”.
On the right the same map is shown inside the input space.

Figure 4.5: Iris classification results using supervised training.

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 36

U−matrix

0.206

1.26

2.31
mcv

d
80.3

89

97.8
alkphos

d
46.4

78.1

110

sgpt

d
15.3

70.9

126
sgot

d
13.9

39.6

65.2
gammagt

d
13.5

105

197

SOM 17−Dec−2015

drinks

d
0.642

8.64

16.6

Figure 4.6: Self organizing map plots for the bupa dataset.

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 37

SOM 17−Dec−2015

U−matrix

0.206

1.26

2.31

Figure 4.7: U-matrix without and with data labels. On the left green labels indicate data
from healthy and red from unhealthy patients.

mountainous region at the bottom. Elevated sgpt, sgot and drinking are characteristics
of the bottom cluster. mcw and alkphos don’t seem too related to the culstering. Adding
the classifications on top of the U-matrix gives additional information. Figure 4.7 shows
the original matrix and a copy with added labels side by side. Contrary to what one would
expect the unhealthy livers are not located in the bottom region, but spread out over the
whole plane. Figure 4.8, explores the notion of distance further. Similarity coloring is
used to make sure similar nodes are given a analogous color. The bottom left region of
the U-matrix (shown in yellow) seems to be particularly distant from the others. Which is
not surprising as the elevated values for sgpt and sgot are found nowhere else. It remains
to investigate the effects of various map sizes on the accuracy. Here data representation
accuracy and topology quality have to be considered. Figure 4.9 shows surface plots for
measures of both, for maps sizes ranging from two to thirty. It follows that the larger
the map the better the quality will be. However training time has not been taken into
account, which would lead into the other direction. As computational effort increases
quadratically with the number of neurons chosen. In general it is desirable that the width
and the hight of the map at least roughly correspond to the number of significant principal
components of the input data set.5 For the bupa data set the singular values are 1.0e03
* (2.3853, 0.9876, 0.3185, 0.2636, 0.1128, 0.0572), which means at least five of
not six significant directions. And indeed, the representation accuracy falls under one for
more then six rows and columns. Another way to chose the neurons is to set their number
to b = 5

√
N .6 In this case this would mean 93 neurons for N = 345. Which is in this case

a little stricter then taking at least as many rows and columns as principle components.

5http://www.scholarpedia.org/article/Kohonen_network
6Suykens, Cursustekst Data Mining and Neural netowrks, page 116

http://www.scholarpedia.org/article/Kohonen_network

SESSION 4. DENSITY ESTIMATION AND SELF ORGANIZING MAPS 38

−2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3
Colored PC−projection

Figure 4.8: Similarity coding colored principal component projection and distance surface
plot with colored nodes. All nodes are colored using similarity coloring.

0

20

0

20

1

2

0

20

0

20

0

0.1

0.2

Figure 4.9: Date representation accuracy and data set topology representation accuracy.

Session 5

Support vector machines

5.1 Vapnik Support vector machines

Neural networks have various nice properties for example their universal approximation
ability. Unfortunately drawbacks also exist. Most prominently the existence of many
local minimal solutions. Despite the fact that these are often good approximations, these
minima sometimes make it hard to reproduce results if a previous solution cannot be found
again. Thus it could be beneficial to look into other algorithms. In this last assignment
classical Vapnik support vector machines will be considered. At the hart of vapnik’s
theory is the optimal hyperplane algorithm.1 In the linear the hyperplane condition is
given as

yk[w
Txk + b] ≥ 1, k = 1, . . . , N (5.1)

The next step is to formulate the optimization problem

min
w,b

1

2
wTw such that yk[w

Txk + b] ≥ 1. (5.2)

Formulating the Lagrange dual, and taking the gradient of L(w, b;α) with respect to
(w, b) leads to a problem in α. The lagrange multipliers are called α, but in this context
they will be called support vectors of the solution. From an optimization point of view, the
support vectors are Lagrange multipliers with active set indices. A problem reformulation
as

yk[w
Tφ(xk) + b] ≥ 1 (5.3)

allows for different kernel options. The classifier is given by

y(x) = sign(
N∑
k=1

αkykK(x,xk) + b). (5.4)

The following three kernels will be considered here2

K(x,xk) = xT
k x (linear SVM), (5.5)

K(x,xk) = (xT
k x+ η)d (polynomial SVM), (5.6)

K(x,xk) = exp(−‖x− xk‖22/σ2) (RBF Kernel). (5.7)

1Suykens, Data Mining and Neural Networks, Cursustekst page 134.
2Suykens, Data Mining and Neural Networks, Cursustekst page 140.

39

SESSION 5. SUPPORT VECTOR MACHINES 40

−5 0 5

−5

0

5

−
20

−
15

−
10

−
5

−
5

0

0

0

5

5

10 15

20

test set

0 50 100 150
0

0.5

1

α

support vectors

Figure 5.1: Linear Vapnik-SVM classification of separable data (left) and support vectors
(right).

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−
1 −1

−
1

−1

−
0
.8

−
0
.8

−
0
.6

−0.6

−
0.
6

−
0
.4

−0.4

−0
.4−

0
.2

−0.2

−
0.2

0

0

0

0

0
.2

0.2

0.2 0
.4

0.
4

0
.4

0
.6

0.
6

0
.8

0.
8

1

1

1
1

test set

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

α
support vectors

Figure 5.2: Gaussian Vapnik-SVM classification of separable data and (left) support
vectors (right).

If the problem is not separable, it means that classification cannot be done without
error. In the underlying optimization problem slack variables have to be included in the
formulation. Figure 5.1 shows classification results using a linear SVM on a separable
data set. It consists of two normally distributed data sets with distributions N ((2, 2)T , I)
and N ((−2,−2)T , I). In total 150 values are sampled from both distributions. Sampling
was done twice first for the training set and once more for the test set. The linear SVM
classifies the two sets correctly. In this case without miss-classification of a single data
point. Two achieve this results the machine uses three support vectors α. Using a more
complex radial basis function (RBF) kernel might seem promising due the its similarity
to the gaussian distribution, where the values have been sampled from. However as this
problem is separable the linear classifier was already sufficient. In this case the more
complex RBF kernel is overmodelling the problem, which can be seen in by the fact, that
is utilizes almost 100 support vectors. Nonetheless it is able to correctly classify all points.
The harder problem is the case where not all points can be classified without error. A slight
modification of the distributions to N ((0.5, 0.5)T , I) and N ((−0.5,−0.5)T , I) produces

SESSION 5. SUPPORT VECTOR MACHINES 41

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−
10

−
5

0

0

5

10

test set

0 50 100 150
0

2

4

6

8

10

α

support vectors

Figure 5.3: Linear Vapnik-SVM classification of indivisible data (left) and support vectors
(right).

−5 0 5

−5

0

5

−
1.5

−
1.5

−
1
.5

−1

−
1 −

1−
0.5

−0.5

0

0

0

0.5

0.
5

1

1

1

1
.5

1.
5

1.51.
5

2

test set

0 50 100 150
0

2

4

6

8

10

α

support vectors

Figure 5.4: RBF Vapnik-SVM classification of indivisible (left) data and support vectors
(right).

SESSION 5. SUPPORT VECTOR MACHINES 42

−4 −2 0 2 4

−4

−2

0

2

4

Figure 5.5: An even harder problem sampled from four normal distributions.

such a scenario. Figure 5.3 shows the performance of a linear SVM faced with such an
inseparable problem. On the training set it misclassified 35 points or 23.3% of the data.
On the test set again 35 points are misclassified. In this experiment using a polynomial
kernel did not improve matters. 40 points or 26.7% where incorrectly assigned during
training and 37 points or 24.7% on the test data. The gaussian kernel led to improvements
during training where only 17.3% of the data was incorrectly assigned to the wrong group
however this effect did not reoccur during testing, where 35 data points or 23.3% where
wrong.

A more complicated problem can be created by sampling four normals with distribu-
tions N ((2, 2)T , I), N ((−2,−2)T , I), N ((2,−2)T , I) and N ((−2, 2)T , I). The first two are
placed in a first group and the data from the last two normals is assigned to a second.
This way the data shown in figure 5.5 has been obtained. Using 160 data points and
sampling again two times for different training and test sets, three Vapnik-SVMs have
been trained for classification. If a linear Kernel is used the result shown in figure 5.6
is obtained. Results are catastrophic 68.8% of the data is incorrectly classified during
training and 65.0% during testing. The Linear kernel is too simple for the complexity
of the problem. The high number of support vectors confirms this conclusion. A plot of
the results is given in figure 5.6. A more complex polynomial kernel delivers significantly
better results. 2.5% of the available data points are incorrectly classified during training
and 4.4% during testing. Figure 5.7 shows the results which are satisfactory overall. Fi-
nally figure 5.8 depicts the results obtained when a RBF-Kernel is used. In this case all
training data points are classified correctly, but during testing the missclasification rises
to 8.1%. Which indicates an over-fitting problem.

So far the box constraint c, which sets the upper limit for the magnitude of any α has
been kept constant at 10. c determines the penalty of miss-classification during the train-
ing process. Reducing c allows the optimization algorithm to allow more missclasification
in order to increase the margin between the involved classes. Thus allowing for greater
generalization. And indeed if c is decreased to c = 1, the training misclassification rises
to 1.9% while test misclassification falls to 5.0%. Related plots are shown in figure 5.9.
Please note an interesting detail. The miss-classified points (indicated by +) at the outer
edges have disappeared. Miss-classifications now only occur in the center where the dis-
tributions overlap more frequently. In the polynomial case nothing changes if c is set to
one. But here no over-fitting problem existed in the first place.

SESSION 5. SUPPORT VECTOR MACHINES 43

−5 0 5

−5

0

5

−4

−3−2

−2

−1

−1

0

0

1

1

2

3

test set

0 50 100 150
0

2

4

6

8

10

α

support vectors

Figure 5.6: Linear Vapnik-SVM classification of the four distributions problem .

−5 0 5

−5

0

5

−2
00

−1
50

−1
50

−1
00

−10
0

−5
0

−5
0

0

0

0

0

50

50

100

100

150

150

200

200

250

250

test set

0 50 100 150
0

2

4

6

8

10

α

support vectors

Figure 5.7: Polynomial Vapnik-SVM classification of the four distributions problem.

−5 0 5

−5

0

5

−
2.5 −

2 −
2−
1.5

−
1.5−

1
.5

−
1.
5

−
1

−1

−
1−

0.5

−
0
.5 −0.5

−
0
.5

0

0

0
0.5

0.5

1

1

1.
5

1
.5

1.5

test set

0 50 100 150
0

2

4

6

8

10

α

support vectors

Figure 5.8: RBF Vapnik-SVM classification of the four distributions problem.

SESSION 5. SUPPORT VECTOR MACHINES 44

−5 0 5

−5

0

5

−1

−1

−
0.5

−0.5

−0.50

0

00.5

0.5

1

1

1

1

1

test set

0 50 100 150
0

0.2

0.4

0.6

0.8

1

α

support vectors

Figure 5.9: RBF-Vapnik SVM classifiaction of the 4 distributions problem with c = 1.

5.2 Least-squares support vector machines

SVMs can also be formulated in a least squares sense. This extension leads to a linear
system without loosing the advantages of the standard SVM formulation.3 Additionally
equality constraints are used instead of inequalities. As a consequence a linear system
yields the solution instead of a quadratic program. Another nice feature is that the
support vectors are proportional to the errors in the least squares case. 4

5.2.1 LS-SVM - Diabetes classification

Once more the Pima diabetes classification data set is considered.5 Least squares support
vector machines with a RBF-Kernel will be utilized. Two thirds of the total 768 available
data sets are used for classification. The last third is set aside for verification. To start
the training process two parameters σ2 and γ have to be chosen. When γ is set to a low
value minimizing of the complexity of the model is emphasized. Choosing a high value
for γ emphasizes good fitting of the machine to the training data points. Increasing the
RBF kernel bandwidth given by σ2 has a smoothing effect on the model. In order to
choose these parameters correctly the least squares support vector machine classification
performance on the validation data is shown in figure 5.10. The optimal value at γ = 30
and σ2 = 13 is marked with x.

5.2.2 LS-SVM - Santa Fee prediction

Finally the Santa Fe Laser data prediction problem will be solved using ls-svms. Before
training the data x have been mapped into the interval [−1, 1]. Additionally the data
has been placed into windows using the ls-svm toolbox function windowize.6 Trough
tuning of the two parameters γ = 30 and σ = 10 have been determined as good ls-svm

3Sykens, Data Mining and Neural Networks, Cursustext, page 146
4J.A.K. SUYKENS and J. VANDEWALLE, Least Squares Support Vector Machine Classifiers, 1999

Kluwer Academic Publishers, pages 294 and 299
5https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
6http://www.esat.kuleuven.be/sista/lssvmlab/

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://www.esat.kuleuven.be/sista/lssvmlab/

SESSION 5. SUPPORT VECTOR MACHINES 45

Figure 5.10: Correct diabetes classifincation in percent for various sigma and gamma
values ranging from one to fifty.

0 20 40 60 80 100
−1

−0.5

0

0.5

1

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Figure 5.11: Santa Fe data prediction using γ = 10 and σ = 10(left) and γ = 30 and
σ = 10(right).

SESSION 5. SUPPORT VECTOR MACHINES 46

0 10 20 30 40 50

σ
2

0

5

10

15

20

25

30

35

40

45

50

γ

on training data

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50

σ
2

0

5

10

15

20

25

30

35

40

45

50

γ

on prediction data

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 5.12: Least square estimation error on training and prediction data for various
ls-svm parameters.

parameters. Figure 5.11 shows the svm prediction performance which rivals that of the
neural committee network used earlier, but it came cheaper in terms of computational
cost. Looking at figure 5.12 the parameter choice γ = 30 and σ = 10 can be confirmed to
be a decent choice. During training only the left plot is available. Knowing that placing
too little emphasis on reducing the model order one will not choose a very high γ and
a small kernel density σ2 due to the overfitting problem. The yellow bar on the left in
the plot on the prediction data mean squared error confirms over-fitting for the top right
corner.

	Introduction
	Approximation of noiseless function data
	The role of the hidden and output layer.
	Linear regression
	Approximating Sine

	Function approximation (noisy case)
	Variation of the noise variance
	Different sized inputs
	The size of the hidden layer
	Different training algorithms
	Early stopping
	Regularization
	Impact of the initial condition

	Curse of dimensionality

	Santa Fe, characters and diabetes
	Santa-Fee data Set
	Variation of the training algorithm and architecture
	Committee network prediction
	Variation of input vector composition
	Other variations

	Alphabet recognition
	Prima Indians Diabetes

	Dimension reduction and input selection
	Dimension reduction by principal component analysis
	Input selection and automatic relevance detection
	demev
	demard
	Ionospere data Set

	Density estimation and self organizing maps
	Density Modeling and Clustering
	The expectation maximization algorithm
	Gaussian mixture models with spherical,diagonal and full covariance

	Self-organizing maps (SOM)
	The Iris dataset
	The burpa dataset

	Support vector machines
	Vapnik Support vector machines
	Least-squares support vector machines
	LS-SVM - Diabetes classification
	LS-SVM - Santa Fee prediction

