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Preface

This thesis is about attention mechanisms in speech recognition. Attention allows
artificial neural nets to focus on audio, video or text data. The concept is therefore not
only important in speech processing. It also appears in amazing feats of engineering
such a neural Turing machines [17], automatic translators [2] or self programming
computers [24]. I hope you will enjoy reading about this exciting topic.
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feedback, debugging ideas, and for believing into this project even when nothing was
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Abstract

Speech recognition is concerned with transcribing what is said in a recoding of
spoken language. In machine learning terms this process is called sequence labeling.
A recoding consists of a chain of frames, this chain can be split up into several
sequences, these make up words or phonemes, which must be labeled. The sequence
of labels forms the transcription.
The meaning of speech depends on context, therefore a good system needs to take it
into account. Classical feed-forward networks fail to do that, which is why systems
in this thesis will mainly consist of recurrently connected Long Short Term Memory
(LSTM) blocks. Inspired by the recurrent connections of neurons in the human brain,
LSTM-RNNs have the ability to store information over long time periods.
In order to train machine learning systems, speech and transcription text pairs are
used. The text contains the exact information of what is said in the recording, but
where in the recoding which word or sound is said is unknown. In other words text
to speech alignment is missing. The key problem in this thesis is data alignment.
Potential solutions such as connectionist temporal classification as well as attention
based transducers will be discussed, with a focus on the latter.
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ŷ Label probability distribution vector
y Label output vector
E Cost function
w Model weight vector
4 Gradient
c LAS context vector
s Recurrent cell state
h Hidden value vector
α Attention vector

vi



Chapter 1

Problem statement

Automatic speech recognition is concerned with finding ways to enable computers
to recognize spoken language and transcribe it to text. Speech recognition asks the
question:
What is being said?

In order to answer this question one must determine, which parts of a recording
contain relevant information. These parts should then be decoded and the rest
ignored. In order to answer the first question one must ask a second:
Which parts are interesting in a recording?

If interesting parts are found in the recording the system should label them
correctly. During the labeling process a sequence of inputs is assigned a sequence
of labels. Following this train of thought a sequence to sequence labeling problem
must be solved. Speech data consists of frames. Transcription means grouping the
interesting frames of the input sequence and assigning labels to these groups. Once
input sequence groups are found and matched with a label sequence, the two are
considered to be aligned. In order to do the alignment one must know:
How can sequence to sequence alignment be established?

This thesis relies on machine learning methods in its attempt to determine what
is being said. Machine learning models typically consist of many unknown weights,
which are initially chosen at random. Better values for each weight are determined
using a form of gradient descent. The process of using gradient descent to determine
good model parameters is often referred to as training. Unfortunately gradient
descent does not always lead to an acceptable solution. Only if the training algorithm
is run with carefully chosen hyper-parameters on a model complex enough to form
an internal representation of the patters it is trained to extract, the optimization
process will terminate at a good optimum. Using machine learning methods leads to
more important questions:
What model architecture is capable of handling the complex patterns found in speech
data? Which hyper-parameters should be chosen to train such a model?

A well known problem of machine learning methods is over-fitting, one must
therefore ask:
How can a model that generalizes well be trained?
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1. Problem statement

Working with raw speech data should be possible in principle, in the speech
literature researchers often use frequency domain representations of the original
speech data. These representations are also called features, which leads to another
question:
What kind of feature representation of the input signal should be used if any?

At this point there are a lot of open questions and finding answers might not
always be easy, it would therefore be interesting to know:
Which methods will allow the solution of any of the questions above?

Last but not least, this thesis should be useful to others. It’s code contributions
should benefit future researchers, which leads to one last question:
How should software be developed in order to produce useful and maintainable results?

This thesis is an attempt answer the questions above, trough literature study,
coding, and experimentation.

2



Chapter 2

Literature Study

This chapter contains a review of some of the most important techniques necessary to
build an end-to-end speech recognition system. After looking at possible input feature
representations, the most important machine learning tools will be explored. Finally
sequence-to-sequence labeling methods such as connectionist temporal classification
(CTC) and the listen attend and spell (LAS) architecture are covered.

2.1 Preprocessing and feature extraction
Filter-Bank features

Filter-banks are collections of filters. These filters can be spread out over audible
frequencies1. Filter-bank output is commonly used as input for speech analysis [20][7].
The number of filter-banks depends on the required resolution, 32 is a common choice
[21]. The energy within the part of the signal spectrum described by all individual
filters is measured. Figure 2.1 shows the resulting energy measurements using 23
filters, for a sentence recording contained in the TIMIT data set. The general
argument for filter banks in speech recognition is that the cochlea, in the human
ear, resembles a filter bank [20, page 30]. Humans do not perceive frequency linearly.
Experimental evidence suggests, that our perception of is scaled according to the
Mel-Scale [20, page 34]:

B(f) = 1125ln(1 + f/700). (2.1)

A normalized plot of this function is shown in figure 2.2 on the left. According to
the Mel-scale, humans are able to distinguish more lower frequencies than higher

1Approximately 16 to 16000 Hz.

Figure 2.1: Frequency Bank input computed from a sentence contained in the
TIMIT dataset. Time is shown on x and Frequency on the y-Axis.
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2. Literature Study
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Figure 2.2: The Mel-scale (blue) with Mel-Frequency Cepstrum Coefficients (red) is
shown on the left. Filterbanks with Mel-spaced filters are depicted on the right.

frequencies. In the plot the first four thousand Hertz occupy roughly eighty percent
of the scale. The band from four thousand to eight thousand Hertz is left with only
about twenty percent of the scale, even tough half of the considered frequencies are in
this band. Mel spaced filter-banks are an attempt to include the human perception
in speech recognition. The filter functions are defined by [20, page 317]:

Hm = 0 if k < f [m− 1], (2.2)

Hm = k − f [m− 1]
f [m]− f [m− 1] if f [m− 1] ≤ k ≤ f [m], (2.3)

Hm = f [m+ 1]− k
f [m+ 1]− f [m] if f [m] ≤ k ≤ f [m+ 1], (2.4)

Hm = 0 if k > f [m+ 1]. (2.5)

In the equations above Hm denotes the magnitude of filter m with a total of M
filters. The frequency is denoted by k, the vector f contains M + 2 linearly spaced
filter border values. These are the red stars on the left of figure 2.2. The right plot
shows the triangular filter banks. These banks are spaced according to the same
values. Roughly speaking using mel-filter banks means using a high filter resolution
where human hearing is good and a low resolution where it is bad.
In addition to perceptually motivated instantaneous features, derivative information
can be appended to each feature vector. These so called delta features add information
regarding the speed of change taking into account 2 ∗N feature vectors. N denotes
the number of frames back and forward in time. The derivative information can be
computed using [30]. The mel feature vectors are denoted by f :

dt =

N∑
n=1

n(ft+n − ft−n)

2
N∑

n=1
n2

. (2.6)

4



2.2. Neural Networks

The formula above is a central difference, because the value at time t is not taken
into account, in contrast to forward or backward differences, where the value at t is
part of the difference. A common choice for N is two. In this case the formula above
simplifies to:

dt = 2ft+2 + ft+1 − ft−1 − 2ft−2
10 . (2.7)

In this case two future frames are used to compute the derivative at time t, which
implies, that at computation time a full recording is available. Should that not be
the case a backward difference scheme should be considered instead. To further
augment the features second derivative or acceleration information can be added as
well. These can be computed by simply applying the central difference to the deltas
one more time. It is important to note that augmenting the features with derivative
information significantly increases their dimension. If 40 mel-filters are used then
the first and second derivatives will contain 40 entries each, therefore increasing the
input dimension from 40 to 120.

Before using the features it is best practice to standardize the components of
the input vectors. It is desirable to use features with an overall mean of zero and
a standard deviation of 1 over the entire training set [12, page 30]. The feature
normalization process starts by computing the mean,

mi = 1
‖S‖

∑
x∈S

xi, (2.8)

and standard deviation,

σi =
√√√√ 1
|S| − 1

∑
x∈S

(mi − xi)2. (2.9)

Of a data set S consisting of input x and target t pairs. Standardized input vectors
can then be computed using:

x̂i = xi −mi

σi
for all xi ∈ S. (2.10)

Input standardization is beneficial to network performance, because it places the
input values in ranges, which standard activation functions such as sigmoids or
hyperbolic tangents can handle better [12, page 30].

Mel-Frequency banks are considered high level feature inputs. When the recogni-
tion system is found to work with these, features on a lower level or even raw data
could be used as input. The idea behind doing less preprocessing, is that the network
might be able to come up with something better on its own.

2.2 Neural Networks
Artificial neural networks where originally designed to model biological neurons.
Even tough it is now known that artificial neural networks have little in common

5



2. Literature Study

with their counterparts in biology, the models are still popular due to their useful
pattern recognition properties [12, page 13]. All neural networks consist of elementary
functions with weighted and biased inputs, the operations necessary to evaluate them
form a computational graph. In a nutshell the idea is to choose the weights and
biases such that the network output corresponds to patterns seen in the input data.
The process of finding good weights is called training. Training in turn is done using
gradient descent.

2.2.1 Gradient descent

The optimization process of neural networks works with a training data set {{x1, t1},
. . . , {xp, tp}} [26, page 156]. The elements of this set are the input- and output-patters
x and t respectively. For each input vector the network output o is computed. Ideally
the network output should be the same as the desired target t one for all data pairs.
The difference between target and current outputs could be measured by the cost
function [26, page 156]:

E = 1
2

p∑
i=1
‖oi − ti‖2. (2.11)

However generally the more complex cross-entropy is used as a cost function, because
it leads to faster convergence and better results in practice [11]. For classification
tasks, cross entropy is defined as [6, page 245]:

E = −
p∑

i=1
ti ln(oi) + (1− ti) ln(1− oi). (2.12)

In order to understand why the cross entropy is a measure of output error, the two
scalar cases t = 0 and t = 1 are considered. For t = 0 the cross entropy simplifies
to − ln(1 − o). Looking at figure 2.3, this expression turns out to be a good cost
function, because for values close to the desired output o = 0, − ln(1 − o) will be
close to zero. If the output moves away from the desired value zero, the cost grows
asymptotically. If t = 1 is considered the cost function simplifies to − ln(o) which
will be zero for the desired output and once more displays asymptotic growth for
undesired values far away from one. If the target probability is somewhere between
these two extreme cases the cost will be the sum of the two cases considered earlier.
Cross entropy is statistically motivated, the output vectors o describe probability
distributions over the possible labels, their elements must therefore be ∈ (0, 1) and
sum op to one.

During the training process a local minimum of the error function E is sought.
At this minimum the difference between the network output o and the target values
t is small. This value might not be the smallest possible value, termination can
happen at the global or a local minimum. After the training process has completed
the network is expected to identify similarities to data seen during the training
process and produce a similar output. In order to reach a local minimum, the
gradient of the error function is needed. The key idea of gradient descent is to follow

6



2.2. Neural Networks
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Figure 2.3: Plot of y = − ln(x) for x ∈ (0, 1).

the negative gradient until a local minimum is reached. Neural networks can be
considered as large composite functions, which are made up of elementary operations.
The evaluation of the network can be written as a graph. Computations are done
at each node and information travels trough the network along directed edges from
node to node. In order to create a computational graph for the training process each
of the output units of the network under consideration are connected to a new node
which computes 1

2(oij − tij)2[26, page 157] or the cross-entropy term of one data
target pair. These new nodes in turn are connected to one more node, which sums
up all error values and produces Ei. The process described above must be repeated
for all training data pairs. One final node is added, which sums up all values Ei. Its
output gives the value for the error function E which is now in the form of a large
graph.
Reverse mode algorithmic differentiation or back-propagation is an algorithm to
compute the gradient of a graph consisting of basic elementary operations. As an
example its operation is now illustrated using the function [9, page 69]:

f(w1, w2, w3) = sin(w1w2) + exp(w1w2w3). (2.13)

This function written in terms of five elementary operations as [9, page 70]:

w4 = w1w2, (2.14)
w5 = sin(w4), (2.15)
w6 = w4w3, (2.16)

w7 = exp(w6), (2.17)
w8 = w5 + w7, (2.18)

o = w8. (2.19)

Computing the gradient means computing the partial derivatives of f with respect

7



2. Literature Study

to all inputs. In this case this means finding:

∂f(w1, w2, w3)
∂w1

= w2(cos(w1w2) + w3 exp(w1w2w3)), (2.20)

∂f(w1, w2, w3)
∂w2

= w1(cos(w1w2) + w3 exp(w1w2w3)), (2.21)

∂f(w1, w2, w3)
∂w3

= w1w2 exp(w1w2w3). (2.22)

Above the derivatives have been found by hand using the chain rule. Now these will
be computed using back-propagation. Figure 2.4 shows a graphical representation of
equation 2.13. The partial derivatives needed for the backwards sweep can be found
on the edges.
The gradient is computed using a forward and backward sweep. During the forward

sweep the inputs are fed into the network and the functions at each node are evaluated
layer by layer, until the output at the last node is known. In figure 2.4 this means
computing w4 to w8.
After the forward sweep the gradient is found by going back trough the network from
the output to each input node. Using a seed value of 1 at the output node the lower
unit values are computed by multiplying the associated partial derivative found on
each edge. If a node has more then one incoming value, their sum is computed. The
process is illustrated in figure 2.5. At the roots of the tree the partial derivatives of
the output with respect to each input can be found. Together these root values make
up the gradient. To be able to perform the first forward sweep the network weights
are initialized at random. The training data pairs are known and can be added as
constants to the graph. If the weights of the network are stored in a weight vector w
the value of the gradient after the nth update may be written as [12, page 27]:

4w(n) = −α ∂f

∂w(n) . (2.23)

Where α ∈ [0, 1] denotes the learning rate. Unfortunately simple gradient descent
tends to get stuck in local optima. In order to increase the chance of gradient
descent to escape from such a local minimum a momentum term can be added to
the formulation [6, page 267][12, page 27]:

4w(n) = m4w(n− 1)− α ∂f

∂w(n) . (2.24)

Above m ∈ [0, 1] denotes the momentum. In order to understand the effect of the
momentum term consider a weight space region of very low curvature, where it can
be assumed, that the gradient stays constant. Using the momentum formula above
yields [6, page 267]:

4w(n) = −α ∂f
∂w(1 +m+m2 + . . . ) (2.25)

= − α

1−m
∂f

∂w . (2.26)
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Using the fact that the sum of the geometric series is known and |m| < 1 must hold.
The momentum term therefore changes the effective learning rate from α to α

1−m
in regions of low curvature. Elsewhere the gradient is oscillatory, which leads to
cancellation of successive contribution of the momentum term [6, page 267].

2.2.2 Regularization

The optimization process works on the training set, but later the trained network
should be able to recognize patterns seen in the training data set in other inputs
and produce similar outputs. In order to achieve this goal it is important not to
memorize training data samples. Another problem with complex networks is that
they are able to track noise in the training data. Regularization techniques aim to
counteract sample memorization and noise tracking in order to ensure that progress
on the training data carries over to new data sets or in other words regularization
aims to improve generalization.

Early stopping

The idea of early stopping is to observe the training and validation loss during
training. As long as both are falling simultaneously, we assume that the network
will also generalize well to other data. This is a reasonable assumption, because
the validation data set plays no part in computing the weight updates. When the
training set loss continues fall, but the validation loss rises, the network is overfitting
[13, page 31]. The training process should be stopped early in theses cases. A test
set should be used to guard against parameter choices that work well only on the
training and validation set. Ideally the performance on the test set should only be
evaluated, once the training process has finished.

Care must be taken, when dividing the entire data set into training, validation
and test subsets. All three sets must be good representations of the overall data set.
Differences for example regarding the noise level should be avoided. Furthermore the
sizes of all sets must be chosen carefully. Using too few samples for validation and
testing, makes it very hard to guard against over-fitting. If the training set becomes
to small, overall performance might suffer. In practice a good trade off must be
found experimentally.

When data collection is expensive cross validation should be used. Cross validation
divides the merged training and validation data sets into k subsets. During each
iteration one of the k subsets is used for validation and the remaining k − 1 sets are
used for training. Cross-validation has the advantage that each subset is used for
training and validation, thus making more efficient use of the total data set. The test
set is very important when working with cross validation, because the validation data
is part of the training process. It should be sufficiently large to detect over-fitting.

Input Noise

Training with input noise means that fixed variance, zero mean Gaussian noise is
added to the inputs during training [13, page 32]. The targets remain unchanged.

10
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The idea is to reuse the training data set more efficiently. When the artifical noise
is similar to the noise already present in the data set, reusing the noisy samples is
better than reusing the original samples. Input noise decreases the reliability of the
inputs during training, it covers small variations caused by noise in the data, which
the network could remember without it during training, if the noise was not present.
Furthermore the artificial noise will help the network to deal with similar noise in
the future, making the trained system more robust. A problem with input noise is
that it is difficult to determine how large the variance should be, one option is to
manually tune the parameter using the validation performance as a metric [13, page
32].

Weight noise

When using weight noise zero mean fixed variance Gaussian noise is added to the
weights during training. The idea is to reduce the precision, with which the network
weights can be described [13, page 32]. The reduced precision makes it impossible
for the network to model small variations in the training samples, which are likely to
be noise. Instead it will only be able to model larger changes and generalize better.
When using input noise the following algorithm should be used [13, page 33]:
while s topping cond i t i on i s False :

S h u f f l e t r a i n i n g data p a i r s
for each t r a i n i n g sample pa i r :

Add Gaussian no i s e to weights
compute the grad i en t
r e s t o r e o r i g i n a l weights
update the o r i g i n a l weights

However weight noise should be used with care, because it can lead to very slow
convergence [13, page 32].

Regularized loss minimization

Regularized loss minimization includes a model complexity penalty term in the cost
function. Instead of minimizing the loss E an augmented loss [6, p. 338][3, p. 171]:

Ê = E + vΩ. (2.27)

is used. Ω stands for a penalty term, which should grow, when the network is likely to
over-fit the training data. v ∈ (0, 1) denotes the weight parameter, which determines
how much emphasis the optimization algorithm should place on regularization. A
straightforward choice for Ω is the l2 norm of the model weights:

Ωl2 = ‖w‖2 = (
√∑

w2)2. (2.28)

The weight norm serves as a measure for the model complexity. The idea of choosing
the simplest possible model which can explain the data, often referred to as Occam’s
razor is expressed in the modified cost function Ê, the result of the optimization
process will be a compromise between fit to the training data and model complexity.
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Figure 2.6: “Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped.” [27], image and caption
taken from the same source.

Dropout

Like input and weight noise, dropout is part of the group of regularization techniques,
that artificially corrupt training data to improve prediction performance [29]. When
applying dropout between two layers, some units and their connections are zeroed out
at random during training. The process is illustrated in figure 2.6. One interpretation
relates dropout networks to committee networks. Committees consist of several
independently trained networks, each of which makes predictions on its own. The final
prediction is then produced by using the mean output of the committee members or by
feeding all outputs into another neural net, which decides on the final output. When
training large deep networks however the committee approach becomes infeasible
due to its large memory requirements. Dropout networks are related to network
committees [27], because when some units are dropped the remaining units will be
forced to learn to work together without the dropped neurons. Just like committee
networks, dropout networks contain multiple mechanisms to recognize the same
pattern, and thus gain some of the prediction robustness that committee networks
are known to have. Another motivation for dropout comes from the theory of sexual
selection [27]. The theory assumes that the superiority of sexual reproduction is
caused by the fact that it removes strong interconnections between genes. After all
a specific gene might not be there a generation from now. To function over many
generations, genes must therefore develop redundant ways that work with many
other different genes. Following this interpretation dropout forces network units to
do the same thing, thereby improving performance.

12
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2.2.3 Deep Neural Networks

Deep learning deals with the design of computational nets, consisting of multiple
layers, which learn representations of data. Deep networks are often used when
abstract patterns must be found. Simple networks are often unable to cope with
the problem complexity, and fail to recognize the underlying structure. Human
speech features such complex patterns, therefore deep networks must be considered.
Increasing the network depth leads to many additional weights, for which a suitable
value must be found. In addition to the added memory load caused by the extra
weights, the optimization process must look trough large data sets until an optimum
is reached.

Stochastic gradient descent

When training deep networks on very large data sets, working with the full data set to
compute the current gradient becomes very inefficient. It is common practice to use
stochastic gradient descent instead of the classic algorithm. The idea is to select small
subsets of the full data set. These so called mini-batches are then used to compute
the outputs and errors, as well as the gradients for these smaller examples. Instead
of working with the gradient of the union of these mini-batches the average gradient
is computed and used to update the network weights. This approach dramatically
reduces the memory requirements of the training process, which makes it possible to
work with more sophisticated network designs.

2.2.4 Recurrent Neural Networks

Good speech processing tools take context into account. To spell the letters which
make up a word, one must know what the previous letter was, in order to make the
right decision. Feed-forward neural nets do not possess memory. These networks
make decisions, starting from zero every time. In oder to fix this a cell state variable
can be introduced. A simple recurrent cell where the current state is set to the
previous output is shown in figure 2.7. Another way to depict the same architecture
is shown in Figure 2.8, here the cell state is not labeled explicitly, the single cell on
the left is just a simplified version of figure 2.7. If the network is unrolled in time
the flow of the state becomes apparent, which is done in figure 2.8 on the right. The
unrolled form shows a direct dependency of the output at time t on the previous
output at t− 1, which in turn depends on the previous outputs. This causes yt and
yt−1 to change together. In other words: The introduction of recurrent connections
leads to correlation of the two outputs.

The exploding and vanishing gradient problem

Even tough past information is available in theory, RNNs have only limited access to
contextual information in practice [12, page 1]. Due to problems with gradient descent
on correlated data, the back-propagated derivative can sometimes become weaker
and weaker until it ultimately vanishes [18]. Another problem is that sometimes
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Figure 2.7: Visualization of a single recurrent cell.
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Figure 2.8: Rolled (left) and unrolled (right) recurrent neural net with two units.

classical recurrent neural nets produce a gradient that blows up [25]. The exploding
gradients can be fixed by clipping, but vanishing gradients require more sophisticated
treatment [5].

Long short-term memory

Initially researchers tried to solve the vanishing gradient problem by making changes
to the training algorithm using simulated annealing, time delays or compression [12,
page 32]. However a good solution to the problem turned out to be changing the
RNN cell architecture. Long short-term memory (LSTM) cells as proposed in [19] are
more complex network units. LSTMs are differentiable versions of computer memory
chips [13, page 37]. Memory chips generally have read, write, and erase ports which
can be set in order to allow the chip’s state to be read, modified or emptied. In the
LSTM case the input, output, and forget gates have the same function [12, page
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33]. Throughout the literature these gates are generally denoted as i, f and o. The
content of the memory or state is written as c, but will referred to as s in this thesis
in order to avoid confusion with the LAS context vector. The output is denoted by
h, while a t subscript denotes the time step. LSTM uses the differentiable equation
system [14, page 5]2:

it = σ(Wixxt + Wihht−1 + Wisst−1 + bi), (2.29)
ft = σ(Wfxxt + Wfhht−1 + Wfsst−1 + bf ), (2.30)
st = ftst−1 + it tanh(Wsxxt + Wshht−1 + bc), (2.31)
ot = σ(Woxxt + Wohht−1 + Wosst + bo), (2.32)
ht = ot tanh(st). (2.33)

(2.34)

From the definition of the matrix product follows that,

Ax1 + Bx2 =
[
A B

]
·
[
x1
x2

]
. (2.35)

Which this relation in mind the equations above can be rewritten, by creating column
wise concatenated weight matrices for every neuron gate Wi, Wf , Wo, as well as for
the state Ws. These matrices can then be multiplied by a row wise concatenated
vector [xt ht−1 st]T , which leads to the slightly simplified system of equations below:

it = σ(Wi[xt ht−1 st−1]T + bi), (2.36)
ft = σ(Wf [xt ht−1 st−1]T + bf ), (2.37)
st = ftst−1 + it tanh(Ws[xt ht−1]T + bs), (2.38)
ot = σ(Wo[xt ht−1 st]T + bo), (2.39)
ht = ot tanh(st). (2.40)

This system of equations is visualized in figure 2.9. Just like diagram 2.7 this
depiction is read from bottom to top. The most important part is the line from st−1
to st [8]. It records operations on the cell state st. The cell state contains information
from the past which helps the block make decisions regarding the current output
ht. The sigmoid functions σ(·) are applied element wise on the input vectors and
produce outputs between zero and one. In the case of the forget gate output ft these
values ∈ (0, 1) serve as a measure of how much of the past state the cell would like to
remember. One means keep this variable and zero throw it away [8]. The following
task is to determine what should be added to the memory. This information can be
found in the input gate result it. it is multiplied element wise with the candidate
values s̄t. These are computed by a hyperbolic tangent neuron. The tanh(·) function
makes sure all vector elements are between −1 and 1. The neuron computing the

2 Various versions of LSTM cells exist. This one is commonly referred to as the “peephole”
variant.
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σ(Wfv + bf ): Forget Gate

σ(Wiv + bi): Input Gate

σ(Woz+ bo): Output Gate

st−1 xtht−1

w = [xt ht−1]
T

v = [xt ht−1 st−1]
T

σ(Wfv + bf ) σ(Wiv + bi) tanh(Wcw + bc)

×
ft

×

it

s̄t
+

st

z = [xt ht−1 st]
T

tanh(st) σ(Woz+ bo)

×
ot

ht

Figure 2.9: Visualization of the LSTM architecture.

candidate state values s̄t looks at input data and the past outputs. Both are labeled
w in figure 2.9, w contains all information that could possibly be included in the new
state. Finally the weighted candidate values are added to what was previously stored.
This operation leads to the updated memory state st. Last but not least the new
output value has to be computed, which will be a filtered version of the cell state.
How much, if anything, of each state variable will be send outside is decided by the
output gate. It’s output ot is multiplied with a rescaled version of the cell state.
The rescaling is done using another hyperbolic tangent, which again sets all values
between minus one and one. The product of this rescaled state and the weights
found in ot then yields the new output ht.

At this point it is interesting to note that the graphs considered in this thesis will
almost exclusively consist out the exponential, logarithmic, sigmoid and hyperbolic
tangent functions. These functions are intimately related. It is well known that the
exponential and logarithmic functions are connected by:

exp(ln(x)) = x if x > 0. (2.41)

The sigmoid and hyperbolic tangent functions in turn consist out of exponentials,
and are related trough [12, page 15]:

tanh(x) = 2σ(2x)− 1. (2.42)
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The equation above can be proven by using the definitions of the sigmoidal σ =
1

1+exp(−x) , and hyperbolic tangent tanh = exp(2x)−1
exp(2x)+1 :

tanh(x) = exp(2x)− 1
exp(2x) + 1 , (2.43)

= 2 exp(2x)− (exp(2x) + 1)
exp(2x) + 1 , (2.44)

= 2 exp(2x)
exp(2x) + 1 −

exp(2x) + 1
exp(2x) + 1 , (2.45)

= 2 exp(2x)
exp(2x) + 1 − 1, (2.46)

= 2
exp(2x)+1

exp(2x)

− 1, (2.47)

= 2
1 + 1

exp(2x)
− 1, (2.48)

= 2 1
1 + exp(−2x) − 1 = 2σ(2x)− 1. (2.49)

These two non-linear functions are thus very similar, in the LSTM-cell their different
function value ranges decide how they are used. Sigmoids determine how much
of something should be used, stored, or deleted, because it’s output values range
between zero and one, while computations done on the cell state use the hyperbolic
tangent, due to it’s wider range of function values.

Bidirectional Long Short Term Memory

With the advent of LSTMs deep recurrent networks became feasible in speech
recognition [16]. RNNs are always deep in time, because their hidden state depends
on past inputs. To enable abstraction their structure must also be deep in space.
A bidirectional LSTM layer is shown in figure 2.10. It is important to note, that
several LSTM layers are often followed by a single linear layer, as is the case in [16]:

−→h t = LSTM(W−→
ht

[xt ht−1]T + b−→ht
), (2.50)

←−h t = LSTM(W←−
ht

[xt ht+1]T + b←−ht
), (2.51)

yt = Wy[−→h t
←−h t]T + by. (2.52)

If stacked on top of each other, these bidirectional LSTM layers form a deep recurrent
network. Defining h0 = x, hN = y looking at time from t = 1 to T and taking N
layers leads to:

−→h n
t = LSTM(Wn−→

ht
[hn−1

t hn
t−1]T + bn−→

ht
), (2.53)

←−h n
t = LSTM(Wn←−

ht
[hn−1

t hn
t+1]T + bn←−

ht
), (2.54)

hN
t = WN

y [−→h t
←−h t]T + bN

y . (2.55)
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Outputs

Backward Layer

Forward Layer

Inputs xt−1 xt xt+1

yt−1 yt yt+1

Figure 2.10: A bidirectional Long short term memory layer, according to [16]

In this setting each LSTM cell has access to information from before or after it. For
this to work the speech sequence, which is analyzed has to be recorded completely. In
this case future information is available and should be used for recognition purposes.

2.3 Connectionist temporal classification
A bidirectional LSTM layer establishes access to past and future input information,
but the alignment of the speech inputs and it’s transcription remains unknown.
Connectionist temporal classification is an output layer, which in tandem with the
BLSTM layer enables the network to work around this problem, while at the same
time allowing the gradient to propagate trough it. The resulting network can be
trained end-to-end.

CTC consists of a softmax layer with one output per alphabet element plus one
for blank our no label. The idea is to allow the network to output a label at any
input time step, and post process these outputs to get the overall sequence of labels
correct, while ignoring the timing of each label. More formally L denotes the used
alphabet and L′ = L ∪ � the alphabet with the empty label. The network output
vectors are denoted by yt and will have length |L′|. Given the training set S and the
input sequence x the probability for observing a sequence π consisting of elements
from L′ with length T is given by [12, page 56]:

p(π|x, S) = ΠT
t=1y

t
πt
. (2.56)

In a first step all a mapping B is introduced, which simplifies the allowed paths
trough the label probabilities, by removing duplicates. For example B(x� xy�) =
B(�xx�xyy) = xxy. In other words a new label is only produced if the output label
changed in the path. The probability of a labeling l can be computed by summing
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up the probabilities of all paths, which map to the same labeling [12, page 57]:

p(l|x) =
∑

π∈B−1(l)
p(π|x). (2.57)

Generally speaking this collapsing process of different paths is what makes it possible
to use CTC with unaligned data.

Equation 2.57 must be evaluated efficiently, which can be done by using a
forward-backward algorithm. Such algorithms compute forward and backward pass
variables αt(s) and βt(s). The two variables break the probability of correctly
predicting the sequence into a prefix α and suffix β part. During training their
product at any time step t and sequence position s yields the probability sum of all
label paths found in the network output y and mapped onto t by B. The probability
of predicting the targets (l = t) given the inputs is then given by:

p(t|x) =
|t′|∑
s=1

αt(s)βt(s). (2.58)

Which is running tough the |t′| elements of the target sequence with added blanks
at the start, end and between all labels. The sum checks all possible alignments,
which could follow from the mapped outputs. Adding up the negative logarithm of
the probabilities above leads to the CTC cost function. Decoding can be done using
simlpe greedy decoding or a more complex beam search variant called prefix search.
More details can be found in [12, chapter 7], [13, chapter 7] and [15].

CTC takes into account only the features and (depending on how the beam search
is done) ignores the label it previously produced. Additionally the number of network
outputs is coupled to the input frames. This shortcoming led to the development of
so called transducers. These models decouple the decoding time from the input time
and use past labels in an attempt to improve performance.

2.4 Listen, Attend and Spell [7]
The Listen Attend and Spell architecture is a deep neural network, designed to
jointly learn to align and transcribe speech data. In contrast to CTC it belongs
to the transducer family of speech recognition algorithms. All transducers have in
common that they consist of an encoder and a decoder, with decoupled time steps.
The idea also appeared in the automatic translation literature [2]. Working on the
source language text, an annotator or encoder produces high level annotations. These
annotations are then given to the translator or decoder, which using its own output
time step works with the annotations to compute a context, which it then uses to
produce a translation. In the speech application the encoder is referred to as the
listener. The decoder as the speller. Combined these two form the las-network. The
listener is a pyramidal recurrent neural net. It accepts filter bank spectra xn as
inputs and produces compressed high level output features hm. Compression reduces
the computational load during feature processing later. The speller in turn accepts
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the features as input and outputs distributions over character sequences yp. Due
to the uncoupling of the input and decoding time step, it requires a state, as well
as an attention mechanism. The state provides a memory of what happened in the
decoder in the past. The attention function determines, which listener-features are
relevant at a given decoding time step. Combining attention and state information
makes it possible to label the input data. An overview of the las-achrcitecture is
given in figure 2.11.

2.4.1 The Listener

The listener, consists of Long Short Term Memory blocks. These blocks are arranged
in layers. The inputs are first fed into a recurrent bidirectional layer (BLSTM). This
choice gives the system access to future data, therefore only fully recorded data
can be analyzed. This system is restricted to applications, which do not require
transcriptions in real time or where its acceptable to wait with decoding until a
sentence has been recorded completely. When going up in figure 2.11, pyramidal layers
(pBLSTM) follow the initial BLSTM layer. The pyramidal structure concatenates
the hidden values computed previously, such that their time dimension is halved:

hn
t = BLSTM(hn

t−1, [hn−1
2t ,hn−1

2t+1]). (2.59)

Technically instead of two, three or more previously computed feature vectors could
be concatenated, which increases the compression factor per pyramidal layer. This
operation reduces the length U of the high level features H. Without this compression
the following attend and spell operation has a hard time extracting the relevant
information, because a longer time span has to be considered to decode a single
character. Additionally the compression reduces the problem complexity, which
speeds up the training process.

2.4.2 Attend and spell

The speller takes the features and produces a distribution over Latin character
sequences as output. The computation of this output involves the context vector ci,
the decoder state si, the features H and the previous output yi. The index i denotes
decoding time, i − 1 is used to refer to results from the last time step. The last
decoding step I, at which the system terminates is a learned quantity. While the last
input step U , depends on the input features, lower case u denotes the input step.
During operation the attend and spell functions keep track of previous output
labels and previously important features, which are contained in the context. This
information is stored in the state si. To function the network must determine,
which part of the computed features in H are relevant at any given decoding time
step i. The context vector ci contains a linear combination of relevant features,
weighted according to their importance. The AttentionContext function determines
these weights based on the state. Finally the speller function finds a probability
over possible labels using the relevant features in the context and the state. The
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computing steps are therefore [7, page 4]:

si = RNN(si−1,yi−1, ci−1), (2.60)
ci = AttentionContext(si,H), (2.61)

P (yi|x,y<i) = CharacterDistribution(si, ci). (2.62)

The state follows from a recurrent multilayer LSTM. In contrast to the listener
the speller is causal, meaning that it makes decisions based only on information
computed during previous decoding steps. LSTMs are necessary here, because past
states must be remembered. The attention mechanism, called AttentionContext
above, computes a new context vector once every time step. This computation starts
with the determination of the scalar energy ei,u, which will be used as weight for
its corresponding feature vector hu. The computation starts with two feedforward
neural networks or multilayer perceptrons (MLP), φ and ψ [7, page 5]:

ei,u = φ(si)Tψ(hu), (2.63)

αi,u = exp(ei,u)∑
u

exp(ei,u) , (2.64)

ci =
∑

u

αi,uhu. (2.65)

α is produced by running e trough a softmax function, which scales e such that all
elements are within (0, 1) and add up to one. These scaled weights, can then be used
to form the context vector ci. When the training process converges the αis typically
follow a distribution with sharp edges [7, page 5]. Thus it is justified to think of the
alphas as a sliding window. This window contains only the currently relevant parts
of the condensed input data set.

2.4.3 Training

For end-to-end speech recognition all networks must be trained jointly. The objective
is to maximize the logarithmic probability:

max
θ

∑
i

logP (yi|x, y<i; θ). (2.66)

Here yi denotes the current output distribution, x the input, θ the various network
parameters and finally y<i the ground truth, which is the known true desired output.
In practice the objective is minimized by working with a cross entropy loss function.
Using the known output during training creates a situation, where the past outputs
are always right. In practice however the situation will be different, as the network
is going to make mistakes. As it is desired to create a robust model it is necessary
to sometimes include the character distribution generated by the networks being
trained. Which leads to the objective [7, page 5]:

ŷi = CharacterDistribution(si, ci), (2.67)
max

θ

∑
i

logP (yi|x, ŷ<i; θ). (2.68)
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x1 x2 x3 x4 x5 x6 x7 x8 xT

Listener:

h1 h2 hu

H = (h1,h2, . . . ,hu)

<sos> y2 y3 ys−1

y2 y3 y4 <eos>

H H HH

c1 c2

Speller:

Figure 2.11: The LAS architecture [7, page 3]. BLSTM blocks are shown in red.
LSTM blocks in blue and attention nets in green.
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The novelty in comparison to the previous expression is that ŷ<i is sometimes taken
from the past network outputs instead of the ground truth. An idea which Chan et
al. found in [4].

2.4.4 Decoding with beam search

In order to generate a readable text, it is necessary to choose characters from the
generated character distributions. One way to do this is to simply pick the most
likely letter from each distribution. This approach is called greedy decoding. It
ignores the possibility of generating better results by also considering less likely
options. It is reasonable to expect better results, when considering more than just
the most likely label, because the attend and spell decoder takes past labels into
account. Consequently a broader search trough the most likely options should be
performed. Unfortunately memory limitations make it impossible to search trough
all possible combinations. Therefore only the n most likely options are explored and
the rest is ignored. This approach is referred to as beam search. Taking into account
the most likely options for each label produces a tree of possible transcriptions. The
different routes along this tree are called hypotheses. A score for each hypothesis can
be computed, by multiplication of the probability values the las-network assigned to
each branch along its path. In order to account for different hypotheses lengths the
total probability must be divided by the hypothesis length. In beam search only the
most likely hypotheses are kept, the beam width determines their number. Using
only las-probabilities is the equivalent of taking only acoustic data and their labels
into account. In general text data is far more abundantly available then speech data.
To take advantage of these large text corpora a language model trained on these
can be used to make a more informed decision when choosing a beam-hypothesis. A
selection can then be made according to [7, page 6]:

s(y|x) = logP (y|x)
|y|c

+ λ logPLM (y). (2.69)

Here PLM denotes the weight the language model assigns to each hypothesis. And λ
is a weight factor, which determines the language model importance. The formula
above describes beam selection using a language model to re-score the attend and
spell probabilities with a language model.

2.4.5 Levenshtein distance

A metric is required to measure the quality of label sequences. The Levenshtein
or edit distance is such a metric. It can be thought of as the minimum number
insertions, deletions or substitutions required to transform one sequence into another.
An example computation for the two words huis and house is shown in table 2.1.
The table cells count replacements, deletions or insertions. At position i, j in the
table the first sequence is taken into account until element i, likewise the second
sequence is considered up to position j. In order to compute the entries in the table
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ε h u i s
ε 0 1 2 3 4
h 1 0 1 2 3
o 2 1 1 2 3
u 3 2 1 2 3
s 4 3 2 2 2
e 5 4 3 3 3

Table 2.1: An example of the edit distance matrix for the dutch word huis and its
english translation house. The edit distance can be found in the cell in the lower
right of the table.

the first row and column of the distance matrix D are initialized to:

D[0, j] = j and D[i, 0] = 0. (2.70)

These entries are known beforehand, because if one index is kept at zero, no elements
of the corresponding sequence are considered and i or j insertions will always be
necessary. If i 6= 0 and j 6= 0 the following update rule is used [22, slide 10]:

D[i, j] = min


D[i− 1, j] + 1, deletion
D[i, j − 1] + 1, insertion
D[i− 1, j − 1] + δ(x[i− 1], y[j − 1]) match or replacement,

(2.71)
with δ(a, b) = 0 if a = b else 0.

(2.72)

Based in these rules the table 2.1, has been computed. Intuitively the distance three
makes sense, because to go from huis to house, an o has to be inserted, the i replaced
with an s and finally and an extra e has to be added, which amounts to three edits.

2.5 Tensor-flow
In this section is devoted to the toolbox, which was used to implement the Listen
Attend and spell, architecture. According to the Tensor-flow authors [1]:

“TensorFlow is an interface for expressing machine learning algorithms, and an
implementation for executing such algorithms”.

In tensorflow a directed graph is constructed based on the input operations which
define a computational model. The graph represents how data flows trough the model.
Each node of the graph has zero or more inputs and zero or more outputs. The nodes
represent operations. Tensors flow along the edges of the graph. Graphs are executed
in sessions. When running a graph the desired output variables or operations must
be specified. Tensorflow then checks if all inputs required to compute the requested
output values or perform the desired operation are present. Afterwards it evaluates
only the operations including the requested node to find the desired output value or
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complete the requested operation. Generally tensors do not outlive a single execution
of the graph. Variables however are persistent. The model parameters must be stored
in variables. If an operation computing gradient values was evaluated previously,
these values can then be applied to weight variables to improve the model parameters
over multiple graph executions.
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Chapter 3

Methodology

This chapter lays out important software development concepts and methods used
to develop the code base, on which this project rests.

3.1 Object oriented programming
In computer science object oriented programming is an important paradigm that
uses objects to group related data and code into object fields and routines. In
addition to better grouping objects allow to encapsulate data, shielding it from
access. Good objects will not only encapsulate data but at the same time provide
the tools necessary to manipulate what is stored inside. Ideally future users or other
team members will be able to use the object without in depth knowledge of it’s
internals, which makes team software development easier. An important goal of this
thesis project is code re-usability, additionally the work developed should fit nicely
into the existing speech recognition toolbox. To allow future users to switch between
various algorithms with ease an object oriented design philosophy is followed. This
approach enables future users to switch from a CTC based to a listen attend and
spell based recognition system by replacing a CTC graph object with a listen attend
and spell graph object.

3.2 Shape invariants
Writing code implementing artificial neural networks is difficult, because the complete
project is not likely to work unless all issues in it’s code have been fixed. A single
bug can prevent experiments from working, in such a case the only feedback the
programmer gets is a negative experimental result. In order to prevent incorrect
implementations of recurrent neural networks it is important to strictly enforce
shape invariants of state tensors in loops. This means that the shape of the tensors
going into a loop body must have the same size when they leave. This way one
can be certain, that for example the network does not change the number of label
probabilities it predicts over time. However sometimes the shape of a tensor must
be altered, for example if newly computed results become available and a tensor’s
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dimension must be increased to create storage space. In such cases shape invariants
must be explicitly turned off, that way data can be accumulated over several loop
iterations. Shape invariants force programmers to consciously specify the tensors and
the corresponding dimensions where data accumulate. Thus making these important
parts of the code explicitly visible, while at the same time preventing unwanted data
accumulation and memory consumption elsewhere.

3.3 Code quality
During coding it is important to ensure that not only the author, but also future
readers and coworkers are able to understand the source. An important part of
ensuring future usability is to document functionality. However readable code is
not just well documented, but also respects well established coding conventions. An
important collection of python code conventions is the python software foundation’s
PEP 8 style guide [28]. However following these conventions is tedious and easily
forgotten. Additionally software development is team work and the best way to ruin
the esprit de corps is an environment where team members constantly complain to
each other about code convention violations. A good way to enforce decent coding
style is to get computers to help. In the python world a useful tool for this purpose
is pylint1. Pylint is a code analysis tool that looks for code patterns, that might
indicate bad style, for example incorrect variable names, missing documentation,
wrong indentation and so forth. Being an interpreted language python code does not
need to be compiled. This advantage comes with an important drawback, because
during compiling many errors in the code are found and reported to the programmer.
Python can do the same thing during runtime, but it crashes when an error is
encountered and already computed data is often lost during those crashes. Pylint
taps into the python interpreter to scan the source for errors like a compiler. By
alerting the programmer to potential issues in the code before execution, pylint can
decrease the number of runtime crashes and increase development efficiency.

3.4 Version control
Version control software tracks changes to the codebase under development and
allows authors to back up versions of the code as revisions. Git2 is a popular version
control tool. Git keeps all past revisions in a graph. The full graph is a recording of
the project’s history since its inception. However version control is more than simply
keeping a record of past changes. Depending on the project adding new features
bears the risk of breaking older code. If things go badly the code can end up in a
state, where neither any of the old nor the desired new functionalities work. In order
to always maintain a working core, version control software should be used to split of
the development of new functionalities into branches. Should serious problems arise,
which where not anticipated when the a feature was planned, the corresponding

1https://pylint.readthedocs.io/en/latest/intro.html
2https://git-scm.com/
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new branch can simply be discarded, leaving the core code intact. Should newly
written functionality work as intended, it’s branch is merged into the core code, which
remained fully functional at all times. Additionally working with branches facilitates
software development in a Team, as different members can work independently on
their own branches. Without branching working with several people on the same
files can become tedious, if conflicting changes are made. Branched work lets team
members focus on development first, potential conflicts are then resolved later, when
the various tree branches are merged.
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Chapter 4

Implementation

This chapter covers key architecture aspects and the reasoning behind design decisions
made while implementing the LAS speech recognition system.

4.1 Loading data and extracting features
During system training as well as decoding usage at later stages, an infrastructure
must be in place to load and process the input data. In the training phase the target
data must be loaded, normalized, encoded and made available to the optimization
algorithm in the correct form. The shape and encoding of the targets depends on
the algorithm used. Connectionist temporal classification requires a blank output
label for example, which listen attend and spell does not need. The code written to
handle the data preprocessing fulfills these requirements.1

4.2 Efficient sequence to sequence implementations
When working with sequence to sequence methods such as LAS or CTC, data
processing problems arise naturally. For efficiency reasons it is beneficial to work
with fixed size data tensors. However the number of frames varies significantly
between utterances. The same holds true for the target lengths. In order to still be
able to work with fixed size tensors, the inputs and targets must be padded with
zeros or unknown tokens to fill up the length differences. In order to keep the speed
benefit of working with tensors it is important to keep track of the sequence lengths
of every tensor flowing along forward connections of the underlying graph. The
sequence length information must be used to avoid actually processing any of the
padded data, that the tensors where filled up with in order to allocate memory faster.
The listener for example produces a three dimensional logit tensor of size [B, T, F ],
where B denotes the batch size, T the largest occuring frame number and F the
feature dimension size. When implementing the output layer the naïve approach

1Its development history as well as the process of harminizing the interfaces of the thesis code
with the rest of the toolbox is recorded in the project git branch at https://github.com/vrenkens/
tfkaldi/commits/las.
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would be to loop over the time dimension, and evaluate the linear layer T times with
a B times F matrix. Which is simple to implement but very inefficient. Instead
the sequence information should be used to remove the padding and concatenate
the batch dimension into a matrix X of size [S, F ], where S denotes the sum of all
sequence lengths. The linear layer can then be evaluated as:

WX + b = R. (4.1)

The result matrix R can then be converted back into a padded tensor using the
sequence length information one more time. An alternative approach which avoids
reshaping is to implement a linear recurrent network cell with a state size of zero
and use dynamic unrollings the evaluate the linear layer. The resulting memory
requirements and speed have been found to be comparable.

4.3 Design of the BLSTM-CTC model

Sequence labeling using connectionist temporal classification happens in two phases.
First BLSTM layers compute annotations based on the input vectors. These annota-
tions are then handed to a CTC layer which runs the annotations trough a softmax
to produce normalized label probabilities and computes the loss during training or
searches trough the probability distributions during decoding. The BLSTM-CTC
implementation reflects this procedure by splitting the BLSTM layers as well as the
training and decoding code into model, trainer and decoding classes. 2

4.4 Implementing Listen attend and Spell

The listen operations computing the high level feature matrix H can be completed
independently before the attend and spell code is run. All listening related code has
therefore been grouped in a listener class, all attend and spell related functions are
grouped in a speller class.

4.4.1 The Listener

The listener consists of an initial bidirectional long short term memory layer (BLSTM),
followed by pyramidal bidirectional LSTM (PLSTM). The PLSTM layer compresses
the time dimension as described in chapter 2.4.1. The compression has been im-
plemented by looping trough the hidden output of the previous layer in time and
concatenating every second vector with the one before it. Every PLSTM layer
therefore halves the time dimension and produces an output of two times the state
size of it’s LSTM cells. For use with CTC a linear output layer can optionally be
added to the listener, which maps the output from two times the state size to the
number of required labels.

2It was not necessary to implement CTC decoding. Tested code is already available at www.
tensorflow.org/api_docs/python/nn/connectionist_temporal_classification__ctc_
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4.4.2 The Speller

Based on the high level features H computed by the listener the speller evaluates an
internal attention mechanism. This mechanism can be interpreted as a learned sliding
window. The speller learns where to place this window based on the decoder state
si. This state therefore represents a query, which asks the attention mechanism to
provide certain information. This query in turn is computed by the spellers internal
RNN. Using the attention factors a context vector c is computed, which together
with the state is used to assign a label. The attention computations described above
and in more detail in 2.4.2, do only depend on data available at the current time and
previously computed values. The spellers key functions can therefore be implemented
within an RNN cell. The state of this augmented RNN cell at decoding time step i
is given by:

state = [yi−1, si−1, ci−1]. (4.2)

The one hot encoded previous label is denoted by y the decoder state by s and
context by c. A visualization of the attend and spell cell implementation is shown
in figure 4.1. The blue box surrounding the attend and spell functions represents a
while or for loop. The loop type depends on whether the speller is run in training
or decoding mode. The ground-truth labels are known during training. The attend
and spell cell must therefore be evaluated until a sequence of the same length as the
ground-truth has been obtained. Taking knowledge of the target sequence length
into account the unrolling can be done in a for loop. Running in decoding mode
is harder, because the length of the sequence the model will assign to the input is
unknown.

Design of the greedy decoding loop logic

The attend and spell cell must be evaluated until it produces an end of sentence
token or an iteration maximum has been reached. The system should be able to
decode multiple sequences in parallel. In order to keep track of the active sequences
a done-vector d is introduced. d contains one entry per sequence, each entry
should contain True if an <eos> token has been produced during decoding of the
corresponding input and False if not. To achieve the desired behavior the following
loop logic has been devised:

while keep_working :
not_done_count = reduce_sum ( l og i ca l_not ( d ) )
done = equal ( not_done_count , 0)
stop_loop = l o g i c a l _ o r ( done , g r e a t e r ( time , max_steps ) )
keep_working = log i ca l_not ( stop_loop )

The pseudocode above relies on the mask d and an upper step limit to check if
the while loop should continue running. In order to implement decoding efficiently
inside of a graph it is important to keep track of the sequence lengths. The decoding
loop implementation does this when it determines the done-mask d. During every
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for y<i in Y or while yi 6= <eos>

[yi−1; si−1; ci−1] LSTM-RNN

State Net

si

H

for hu in H

Feature Net

ψ(si)
Tφ(hu)

ψ(si)

φ(hu)

exp(ei,u)∑
u

exp(ei,u)

ei,u

for hu in H∑
u
αi,uhu

αi,u

[ci; si]

ci

Character Distribution Net

si

p = P (yi|x, y<i)

decode(p) ⇒ yi

Figure 4.1: Schematic of the attend and spell cell components.
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iteration the loop body updates the sequence lengths with the current decoding time,
unless d contains True at the position corresponding to the current utterance.

decoded = decode ( l o g i t s )
mask = t f . equal ( decoded , <eos >)

time_vec = ones ( s e l f . batch_size )∗ ( time+1)
sequence_lengths = s e l e c t (d ,

log i t s_sequence_length ,
time_vec )

d = l o g i c a l _ o r (mask , d)

The code listing above updates d after the sequence lengths have been updated,
because the <eos> token should be recorded as well. It is assumed that the decoded
function returns a one hot vector and <eos> represents an encoded end of sentence
token. d is initialized to False for all sequences.

Design of the beam search decoding loop

The author is unaware of a debugging tool, which would allow to stop executing a
tensorflow graph at a given point and examine the graph variables. The beam search
operations have therefore been designed using print statements only. In order to
reduce the workload the loop logic has been kept exactly the same as the one used
for greedy decoding. Instead of processing multiple utterances at the same time,
beam width different hypotheses of the same utterance are dealt with. Decoding of
this single sample stops, if all beam elements produced an end of sentence token.
Furthermore the beam search code keeps the labels, probabilities, cell-states, sequence
lengths and done-masks in sorted order for the entire beam.

Cell efficiency improvements

In figure 4.1 the feature net output ψ(hu) is evaluated inside the cell. While closely
following the equations in [7], evaluating the feature net inside the cell means accessing
H and evaluating an MLP at every decoding time step. Instead the ψ(hu) can be
computed outside of the cell ahead of decoding time and a matrix Ĥ consisting
of ψ(hu) for all u is used inside the cell. Furthermore all computations have been
implemented using matrix tensor multiplication functions instead of for loops, which
yields large performance increases. Figure 4.2 shows a tensorboard3 visualization of
the attention computation. The rose colored blocks represent matrix multiplications.

3https://www.tensorflow.org/versions/master/how_tos/graph_viz/
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Figure 4.2: Tensorboard visialization of the attention context computations.
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Chapter 5

Experiments

5.1 TIMIT
The timit speech corpus [10], contains recordings of ten phonetically rich sentences,
for example:

“She had your dark suit in greasy wash water all year. ”

For each sentence a transcription of the spoken phonemes is also available. Phonemes
are sets of sounds, which are considered equivalent in a given language. In alphabetic
writing systems one the phoneme to letter mappings should ideally be bijective.
Bijective functions map one input to only one target and vice versa. Due to the fact
that the Latin script was devised for classical Latin as well as the fact that when
pronunciation changes the spelling often remains the same, the phoneme to letter
mappings are often far from ideal in modern languages. Therefore the timit data
set comes with phonetic transcriptions for all sentences. For the sentence considered
above the spoken phonemes are:

“h# sh ix hv eh dcl jh ih dcl d ah kcl k s ux q en gcl g r ix s ix w ao
sh epi w ao dx axr ao l y ih axr h# ”

The transcriptions contain a total of 64 possible phonetic labels, in the literature
the full set and foldings with 48 and 39 labels are considered [23]. In all following
experiments the 39 labels shown in 5.1 will be considered.

The timit data set is split into a training, validation and test set. Containing
3696, 400 and 192 sentences [13, page 80].

5.2 BLSTM-CTC
This section explores bidirectional long short term memory layers with CTC output
on the timit corpus [13, 15]. Training began after transforming of the speech data
into Mel frequency cepstral coefficients (MFCCC s) augmented with first and second
derivative information. The raw time domain signal as well as the feature vectors
are shown in figure 5.2. The phonemes where folded as described above. Two
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Figure 5.1: 48 to 39 phoneme folding as shown in [23].
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·104
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Figure 5.2: Raw time domain signal and feature vectors. Features include 40 mel
banks as well as the first and second derivatives. Raw data was taken from TIMIT
utterance faem0-si2022 “What outfit does she drive for?”.
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Figure 5.3: Validation and Test set error while training a two layer BLSTM network
with CTC output layer on the TIMIT speech corpus with 39 folded phonemes.

BLSTM layers where stacked on top of each other, both using LSTM cells with a
dimension of 64 in each direction. The logits computed by the two layers where then
fed into a CTC output layer, finally beam search decoding with a beam width of 100
was used to find the phoneme predictions. The whole network was optimized using
gradient descent and a learning rate of 10−3. To ensure generalization normal input
noise N (µ = 0, σ = 0.65) was added to the inputs. All feed-forward weights where
initialized using another Gaussian N (0, 0.1), lstm weights were initialized using a
random uniform distribution U(−0.1, 0.1). Gradients where clipped such that all
gradient elements are within (−1, 1). Results of the training process are shown in
figure 5.3. In the experiment the training process was stopped after 10 epochs to be
able to compare the result to the pyramidal listener experiment in the next chapter,
at this point the phoneme error rate of this layout was at 29%. However if the
training process is continued with decreasing learning rates the error rate values end
up close to 26% eventually. Performance can be increased further by assigning the
LSTM cells a larger state dimension.

5.3 Listen attend and spell experiments
In this section experiments use the full listen attend and spell architecture. After
verification of the listener using a CTC output layer, the listen attend and spell
network is first tested using greedy decoding. In contrast to beam search greedy
decoding does not maintain several hypotheses, instead it works with the most likely
label each time step.

5.3.1 Testing the Listener

A crucial part of the listen attend and spell architecture is formed by the listener.
Before working with a fully-fledged las a CTC-layer will be attached to the listener.
The idea is to verify the implementation. If CTC can extract relevant information
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Figure 5.4: The training progress shown for the Listener with added CTC layer. The
training and validation loss values are shown in blue and green on the left. The plot
on the right depicts the decoding performance on the validation set.

from the listener, the attend and spell code should be able to do the same in later
experiments. In order to keep memory requirements manageable in later experiments
with the same listener all LSTM cells where set up with 64 hidden units. As
the listener layers are bidirectional this means 64 in each direction so the hidden
dimension is 128 in total. This sum is important, because the feature dimension of
the LSTM outputs is concatenated for each time step. If no further action is taken
the listener produces features with a dimension of two times the number of elements
per LSTM. CTC runs the logits it is given trough a softmax layer to compute label
probabilities. To function it must therefore be given a logit tensor, where the feature
dimension is equal to the number of labels, the system is supposed to output. To meet
this requirement an extra linear output layer has been added to the listener which
maps the feature dimension to 40, as required. The beam width during decoding
was set to 100. Figure 5.4, shows the optimization algorithm’s progress, as measured
by trainig loss, validation loss and validation set decoding phoneme error rate. The
training was stopped, after 10 epochs. During testing a phoneme error rate of 0.268
was observed, which indicates that no important information was lost during the
compression process. Care must be taken when comparing single experiments. The
optimization algorithms can terminate at different local optima, results vary. Due
to time constraints, this thesis relies on single experiments, to come to more solid
conclusions more experimental evidence is required.

5.3.2 Greedy Decoding Experiments

Using the tested listener with 64 hidden lstm units per direction and one pyramidal
layer, the CTC layer is replaced with attend and spell functions. Within the speller
the decoder state size was chosen to be 128, considering the fact that the listener
outputs features of size 128, which in turn determines the context vectors to have
this same dimension. This choice was made hoping to provide sufficient memory
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Figure 5.5: The training progress shown for the full las architecture with greedy
decoding, over 40 epochs, network output reuse probability 0.7 and input noise
standard deviation 0.65 .

to remember past context vectors. The state and feature networks, φ and ψ were
given one hidden layer each, with a hidden dimension of 64. This choice was made
mainly to conserve memory. During training the network output was used instead
of the true target with a probability of 0.7. Figure 5.5 shows an overview of the
training process. When considering the last five epochs, the decoding error ranges
between 0.5 and 0.9. This means that in the best case half of the labels produced
by the system must be modified in order to get to the target sequence. Considering
timit utterance fmld0_sx295 the folded transcription with additional start and end
of sentence tokens is given by:

Listing 5.1: Targets
<sos> s i l ih f s i l k eh r l s i l k ah m z

s i l t ah m aa r ah hh ae v er r ey
n jh f er m iy dx iy ng ih s i l t uw s i l

<eos>

From the input features the las network decodes:

Listing 5.2: Network output
<sos> s i l hh ih f s i l k er r ow ow s i l s i l

t ah m aa hh hh ae v er r r n n s i l
f e r er m iy iy iy iy iy iy iy iy s i l
s i l t uw s i l

<eos>

The decoding and target sequences clearly bear some resemblance. However significant
errors do exist in the network output in particular in the last third. The phoneme
sequence dx iy ng ih is incorrectly transcribed as iy iy iy iy iy iy iy iy, which has
a large impact on the error. The levenstein distance between the two labellings is
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Figure 5.6: Plot of the alignment vectors computed by the network for all 45 labels
assigned to timit utterance fmld0_sx295 (left), and alignments assigned by a human
listener (right).

21. Given that the target sequence contains 42 labels including the start and end of
sentence tokens, the error rate of this example is 0.5, it is therefore slightly better
than the average of 0.55, which is the average decoding error rate over the entire
test set.

5.3.3 The attention mechanism

In order to further verify the implementation of the speller all attention weights
α (equation 2.65), have been extracted during greedy decoding. The left side of
figure 5.6 shows these vectors in concatenated matrix form. The speller assigns 45
labels. During each decoding time step one label is produced, therefore the attention
matrix has the same number of columns. The y-Axis shows compressed input time.
This dimension depends on the length of the input utterance under consideration
and the compression level, which is set by the number of pyramidal LSTM layers.
The attention weights are normalized using a softmax function, hence all elements
must sum to one. The scale shown next to figure 5.6 therefore ends at one, values
close to one indicate that the network is focusing on a single feature. Generally
the attention weights should gradually cover all relevant features over time, this is
definitely the case, as the attention weight is clustered around the matrix diagonal.
Furthermore only a limited number of compressed frames can be relevant at any
given time, ideally each vector should contain a sharp peak at the most relevant
frame. The timit data corpus comes with alignments found by human listeners. The
recoding of utterance fmld0_sx295 lasts for 3.018s. During the feature computation
one frame is placed every 0.01s. Therefore this will have 302 frames. Using a listener
with a single pyramidal layer 151 high level feature vectors will be computed for this
utterance. The right side of figure 5.6 shows the rescaled human alignment. The
two plots show some resemblance, which indicates that the implemented attention
mechanism is working properly. With the parameters set as described the in the
previous section the attention mechanism breaks down towards the end, which can
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Figure 5.7: Closeup on interesting parts of the first third of the attention matrix.
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Figure 5.8: Closeup on interesting parts of the second third of the attention matrix.
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Figure 5.9: Closeup on interesting parts of the last third of the attention matrix.
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Figure 5.10: Learning curves of the las architecture with an additional post context
LSTM block. Greedy decoding was used as well as training network output reuse
probability of 0.7.

be seen in the closeup shown in figure 5.9. When the speller produces the incorrect
sequence of iys the attention weights are spread out over roughly 10 feature vectors.
Given the poor quality of the resulting labels at these decoding steps this is probably
not sharp enough.

5.3.4 A second attend and spell cell type

Looking at figure 2.11 it is not perfectly clear weather the blocks after the context
computations represent LSTM-cells or are simply part of the feedforward labeling
network. Until now it has been assumed that no additional recurrent LSTM network
after the context is part of LAS. In this section such an extra RNN will be investigated
briefly. The attend and spell cell variation is shown in figure 5.15. The state of
the extra memory cell is labeled with d. A learning curve over 10 epochs using a
ground-truth probability of 0.3 with greedy decoding is shown in figure 5.10. The
results are slightly worse then what was observed with the original setup, despite
the extra weights. This result indicated that the extra post context RNN has no
additional value. It is therefore concluded that the decoder state si is probably
sufficient to remember past context information.

5.3.5 The effect of the groundtruth selection probability during
training

In the previous experiment the groundtruth was only used instead of the network
output in 0.3 percent of the cases. As the network output is often incorrect during
training, less emphasis will be put on past outputs later during decoding. This
section investigates other values. The same las network is retrained for 10 epochs
using output probabilities of 0.2, 0.4, 0.6, 0.8. Results are shown in figure 5.11. It
can be observed, that decoding results improve when reduced emphasis is placed
on past labels during training. This observation is confirmed by the phoneme error
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Figure 5.11: Repetitions of the same experiment with increasing network output
reuse probabilities 0.2, 0.4, 0.6, 0.8, one experiment per row.
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rates of 2.08, 1.97, 1.1168, 0.87, which where observed on the test set. To explore
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Figure 5.12: Training full las over 40 epochs with a network output reuse probability
of 0.5.

the effect of a low reuse probability over longer training periods the experiment has
been repeated one more time with a 0.5 groundtruth probability over 40 epochs.
Figure 5.12 depicts the training process. In comparison to the experiment shown in
figure 5.5 the network does significantly better during training, but this improvement
does not translate into a better decoding performance.

Ideally one would like to observe the opposite. If the output labels where correct
more often during decoding, the networks trained to rely on them should outperform
those which where not. Based on the observations above we conclude that beam
should decoding should yield labels of higher quality, while networks, which learned
to rely on past outputs, should benefit in particular.

5.3.6 Beam-search and Dropout

Two measures have been taken to increase system performance. First a beam of las
labels and states is kept, in order to explore several labeling hypotheses as described
in chapter 2.4.4. However the current version of the code does not use language
model rescoring.

Second dropout has been added as shown in figure 5.13. The rationale behind
using dropout regularization is to allow larger networks to be trained longer without
running into over-fitting problems. In comparison to the previous experiments all
network parameters have been doubled. Which means that all BLSTM layers used
128 units, all LSTM layers used 265 and all feedforward layers again 128 units.
Due to good results in previous experiments the network output reuse probability
during training was kept at 0.6. The settings described above led to the learning
curves shown in figure 5.14. The validation error drops consistently under 50 percent,
without large outliers.
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Listener

x

input dropout

BLSTM

hidden dropout

PLSTM

H

Feature net

input dropout

feedforward layer

hidden dropout

feedforward layer

Speller
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input dropout

State-LSTM

State net

input dropout

feedforward layer

hidden dropout

feedforward layer

attention context

Char net

input dropout

feedforward layer

hidden dropout

feedforward layer

ŷi

Figure 5.13: Listen attend and spell forward connections with added dropout. No
recurrences are shown.
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Figure 5.14: Dropout LAS learning curves with a listener LSTM using 128 units
per direction and one PLSTM. The speller LSTM state size was set to 256. All
feed-forward networks in the speller had 128 units per layer and two layers overall.

Considering once more utterance fmld0_sx295.

Listing 5.3: Targets
<sos> s i l ih f s i l k eh r l s i l k ah m z

s i l t ah m aa r ah hh ae v er r ey
n jh f er m iy dx iy ng ih
s i l t uw s i l

<eos>

The network now decodes:

Listing 5.4: Network output
<sos> s i l hh ih f s i l k ih r ow s i l k ah m s i l

s i l t ah m aa aa hh hh v v er ey
n n s i l f f e r m iy iy iy iy s i l
s i l t uw s i l s i l

<eos>

Which is considerably better than the result obtained earlier. The levenstein distance
over target length ratio drops to 0.36 for this utterance. However over the entire test
set 0.45 has been measured. This result is considerably better than the 0.55 which
where observed in section 5.3.2 using a much simpler model with greedy decoding
and input noise regularization.
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for y<i in Y or while yi 6= <eos>

[yi−1; si−1; ci−1] LSTM-RNN

State Net

si

H

for hu in H

Feature Net

ψ(si)
Tφ(hu)

ψ(si)

φ(hu)

exp(ei,u)∑
u

exp(ei,u)

ei,u

for hu in H∑
u
αi,uhu

αi,u

LSTM-RNN

ci

di−1

[di; si]

di

Character Distribution Net

si

p = P (yi|x, y<i)

decode(p) ⇒ yi

Figure 5.15: A different attend and spell cell configuration, featuring an additional
post context RNN
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Chapter 6

Conclusion

In chapter 1 important questions where asked, which this thesis attempts to answer.
Based on the experimental evidence gathered it can be said that the implemented
listen attend and spell model is able to recognize speech and determine relevant parts
of input recordings. The attention weights computed by the model as well as the
actual labeling do resemble results obtained by human listeners. This result suggests
that [7] correctly claims that neural attention mechanisms can be used to align text
to speech data. In terms of network regularization dropout [27] has been found to be
a useful tool. Working network parameters turned out to be scaled down versions of
the ones stated in the original las paper [7]. For the feedforward parameters which
are not mentioned it has been found that 64 or 128 units and one hidden layer leads
to convergence on timit. However the author is confident that further tuning and
exploring deeper configurations will lead to additional accuracy improvements.

The goals of this thesis project where to implement a skeleton las model, beam
search decoding, and explore different regularization models if possible. Experimental
evidence has been gathered, which suggest that the all three goals have indeed been
achieved. Some further experimental validation is required. In particular additional
separate testing of the beam search and dropout code, which has been tested together
in order to satisfy time constraints.

Another important part of this thesis, was to improve the authors insight into
software development methods. The thesis deliverables include more than thousand
lines of documented and pylinted python code. The code fully integrates into the
existing toolbox under development in the speech group at esat. The author hopes,
that this work will serve as a good foundation for future development.
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ABSTRACT

Attention mechanisms are an interesting new trend in ma-
chine learning. Recently an attention based speech transducer
called Listen, Attend and Spell (LAS) [1] has been devel-
oped. LAS is an end-to-end system, which can be trained
jointly using gradient descent. In contrast to previous sys-
tems LAS decouples input and decoding time, producing an
output sequence directly without requiring collapsing func-
tions or independence assumptions. Here we present our own
re-implementation of this algorithm.

Index Terms— Neural attention, data alignment, speech
recognition, end-to-end networks.

1. INTRODUCTION

Automatic speech recognition is concerned with finding ways
to enable computers to recognize spoken language and tran-
scribe it to text. In order to solve this task using machine
learning algorithms, it must be determined, which parts of a
recording are interesting. Neural attention is a good way to
do that. It is the most important part of the LAS architecture,
which consists of two parts, a listener and a speller. The lis-
tener functions as an encoder computing a compressed high
level representation of the input. It consists of a bidirectional
Long Short Term Memory (BLSTM) layer followed by pyra-
midal LSTM layers (PLSTM). Each pyramidal layer halves
the time dimension of the input. At the hart of the speller is
an attend and spell cell. This augmented recurrent neural net-
work cell contains the attention and spelling functions which
produce the desired output sequence when unrolled.

2. LONG SHORT TERM MEMORY

Long short term memory blocks can be thought of as differ-
entiable versions of computer memory chips [2]. Differentia-
bility is important, because it allows systems containing these
memory cells to be trained using gradient descent. LSTMs
can be accessed trough input output and forget gates, which
let the optimization algorithm control, what inputs are stored,
which parts of the internal memory are erased and which state
elements turn into outputs. The gates it, ft,ot as well as the

state st and the output ht are defined by [3]1 :

it = σ(Wi[xt ht−1 st−1]
T + bi), (1)

ft = σ(Wf [xt ht−1 st−1]
T + bf ), (2)

st = ftst−1 + it tanh(Ws[xt ht−1]
T + bs), (3)

ot = σ(Wo[xt ht−1 st]
T + bo), (4)

ht = ot tanh(st). (5)

The most important equation is the one for the state st, the
state functions as cell memory, and it’s equation contains all
possible operations, which can be applied to it. The first sum-
mand is the result of multiplying the forget gate’s output ele-
ment wise with the state from the previous time-step. One en-
tries in ft mean “Keep this value”, zeros mean “trow it away”.
The second summand allows adding input values to the state.
The values between zero and one in it express which of the
input elements should be remembered. Finally ot determines,
which elements of the internal memory will be shared with the
outside world. In contrast to simple recurrent cells LSTMs do
not suffer from the vanishing gradient problem. Which is why
they form a the bedrock of the LAS system.

3. LISTEN ATTEND AND SPELL

The Listen Attend and Spell [1] architecture is a deep neu-
ral network, designed to jointly learn to align and transcribe
speech data. It consists of two parts. The first part also called
the listener accepts filter bank spectra xn as inputs and pro-
duces compressed high level output features hm. Compres-
sion reduces the computational load during feature processing
later. The speller in turn accepts the features as input and out-
puts distributions over character sequences yp. Due to the
uncoupling of the input and decoding time step, it requires a
state, as well as an attention mechanism. The state provides
a memory of what happened in the decoder in the past. The
attention function determines, which listener-features are rel-
evant at a given decoding time step. Combining attention and
state makes it possible to label the input data. An overview of
the las-achrcitecture is given in figure 1.

1Various versions of LSTM cells exist. This one is commonly referred to
as the “peephole” variant.
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Listener:
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H = (h1,h2, . . . ,hu)

<sos> y2 y3 ys−1

y2 y3 y4 <eos>
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Speller:

Fig. 1. The LAS architecture [1]. BLSTM blocks are shown
in red. LSTM blocks in blue and attention nets in green.

3.1. The Listener

The listener, consists of Long Short Term Memory blocks.
These blocks are arranged in layers. The inputs are first
fed into a BLSTM layer. This choice gives the system ac-
cess to future data, therefore only fully recorded data can
be analyzed. When going up in figure 1, pyramidal layers
(pBLSTM) follow the initial BLSTM layer. The pyramidal
structure concatenates the hidden values computed previ-
ously, such that their time dimension is halved:

hn
t = BLSTM(hn

t−1, [h
n−1
2t ,hn−1

2t+1]). (6)

Technically instead of two, three or more previously com-
puted feature vectors could be concatenated, which increases
the compression factor per pyramidal layer. This operation
reduces the length U of the high level features H. With-
out this compression the following attend and spell operation
has a hard time extracting the relevant information, because
a longer time span has to be considered to decode a single
character. Additionally the compression reduces the problem
complexity, which speeds up the training process.

3.2. Attend and spell

The speller takes the features and produces a distribution over
Latin character sequences as output. The computation of this
output involves the context vector ci, the decoder state si, the
features H and the previous output yi. The index i denotes
decoding time, i − 1 is used to refer to results from the last
time step. The last decoding step I , at which the system ter-
minates is a learned quantity. While the last input step U ,
depends on the input features, lower case u denotes the input
step.
During operation the Attend and spell functions keep track
of previous output labels and previously important features,
which are contained in the context. This information is stored
in the state si. To function the network must determine, which
part of the computed features H are relevant at any given de-
coding time step i. The context vector ci contains a linear
combination of relevant features, weighted according to their
importance. The AttentionContext function determines these
weights based on the state. Finally the speller function finds a
probability over possible labels using the relevant features in
the context and the state. The computing steps are therefore
[1]:

si = RNN(si−1,yi−1, ci−1), (7)
ci = AttentionContext(si,H), (8)

P (yi|x,y<i) = CharacterDistribution(si, ci). (9)

The state follows from a recurrent multilayer LSTM. In con-
trast to the listener the speller is causal, meaning that it makes
decisions based only on information computed during previ-
ous decoding steps. LSTMs are necessary here, because past



states must be remembered. The attention mechanism, called
AttentionContext above, computes a new context vector once
every time step. This computation starts with the determina-
tion of the scalar energy ei,u, which will be used as weight for
it’s corresponding feature vector hu. The computation starts
with two feedforward neural networks or multilayer percep-
trons (MLP), φ and ψ [1]:

ei,u = φ(si)
Tψ(hu), (10)

αi,u =
exp(ei,u)∑
u
exp(ei,u)

, (11)

ci =
∑
u

αi,uhu. (12)

α is produced by running e trough a softmax function, which
scales e such that all elements are within (0, 1) and add up
to one. These scaled weights, can then be used to form the
context vector ci. When the training process converges the
αis typically follow a distribution with sharp edges[1]. Thus
it is justified to think of the alphas as a sliding window. This
window contains only the currently relevant parts of the con-
densed input data set.

3.3. Training

For end-to-end speech recognition all networks must be
trained jointly. The objective is to maximize the logarith-
mic probability:

max
θ

∑
i

logP (yi|x, y<i; θ). (13)

Here yi denotes the current output distribution, x the input,
θ the various network parameters and finally y<i the ground
truth, which is the known true desired output. In practice the
objective is minimized by working with a cross entropy loss
function. Using the known output during training creates a
situation, where the past outputs are always right. In practice
however the situation will be different, as the network is going
to make mistakes. As it is desired to create a robust model it
is necessary to sometimes include the character distribution
generated by the networks being trained. Which leads to the
objective [1]:

ŷi = CharacterDistribution(si, ci), (14)

max
θ

∑
i

logP (yi|x, ŷ<i; θ). (15)

The novelty in comparison to the previous expression is that
ŷ<i is sometimes taken from the past network outputs instead
of the ground truth. An idea which Chan et al. found in [4].

3.4. Decoding with beam search

In order to generate a readable text, it is necessary to choose
characters from the generated character distributions. One

way to do this is to simply pick the most likely letter from
each distribution. This approach is called greedy decoding. It
ignores the possibility of generating better results by also con-
sidering less likely options. It is reasonable to expect better
results, when considering more then just the most likely label,
because the attend and spell decoder takes past labels into ac-
count. Consequently a broader search trough the most likely
options should be performed. Unfortunately memory limita-
tions make it impossible to search trough all possible combi-
nations. Therefore only the nmost likely options are explored
and the rest is ignored. This approach is referred to as beam
search. Taking into account the most likely options for each
label produces a tree of possible transcriptions. The different
routes along this tree are called hypotheses. A score for each
hypothesis can be computed, by multiplication of the proba-
bility values the las-network assigned to each branch along its
path. In order to account for different hypotheses lengths the
total probability must be divided by the hypothesis length. In
general text data is far more abundantly available than speech
data. To take advantage of these large text corpora a language
model trained on these can be used to make a more informed
decision when choosing a beam-hypothesis. A selection can
then be made according to [1, page 6]:

s(y|x) = logP (y|x)
|y|c

+ λ logPLM (y). (16)

Here PLM denotes the weight the language model assigns to
each hypothesis. And λ is a weight factor, which determines
the language model importance. The formula above describes
beam selection using a language model to re-score the attend
and spell probabilities with a language model.

4. RESULTS

New will present two experiments, which indicate that the
re-implemented LAS system works.

4.1. Greedy Decoding

We verified the attention mechanism experimentally. In a first
experiment all listener LSTM states sizes were set to 64. One
pyramidal layer was used in the listener. The speller’s state
was given a dimension of 128, and all feedforward networks
in the speller where chosen to have 64 units per layer with
two layers each. During training the network output reuse
probability was set to 0.6, and normal distributed noise with
a standard deviation of 0.65 was added to the inputs for regu-
larization purposes. Using momentum gradient descent with
a learning rate of 10−3 and a decay term of 0.9 as well as
greedy decoding we observed a phoneme error rate of 0.55
on the timit test set after training for 40 epochs. A plot of
the attention as well at human alignments for timit utterance
fmld0 sx295 is shown in figure 2.
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Fig. 2. Plot of the alignment vectors computed by the network
for all 45 labels assigned to timit utterance fmld0 sx295
(left), and alignments assigned by a human listener (right).

0 20 40 60 80 100 120
0

50

100

150

Epochs

C
ro

ss
en

tr
op

y
lo

ss

training
validation

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Epochs

Ph
on

em
e

er
ro

r
ra

te

validation

Fig. 3. Dropout LAS learning curves with a listener LSTM
using 128 units per direction and one PLSTM. The speller
LSTM state size was set to 256. All feed-forward networks in
the speller had 128 units per layer and two layers overall.

4.2. Beam search and dropout

Two measures have been taken to increase system perfor-
mance. First a beam of las labels and states is kept, in order
to explore several labeling hypotheses as earlier. However no
language model rescoring was used.

Second we removed input noise regularization and added
dropout. For all networks input neurons are dropped with
a probability of 0.2, hidden and output neurons are dropped
with a probability of 0.5. The rationale behind using dropout
regularization is to allow larger networks to be trained longer
without running into over-fitting problems. In comparison
to the previous experiment all network parameters have been
doubled. Which means that all BLSTM layers used 128 units,
all LSTM layers used 265 and all feedforward layers again
128 units. The network output reuse probability during train-
ing was set 0.6. The settings described above led to the learn-
ing curves shown in figure 3. The validation error drops con-
sistently under 50 percent, without large outliers.

Considering once more utterance fmld0 sx295.

Listing 1. Targets
<sos> s i l i h f s i l k eh r l s i l
k ah m z s i l t ah m aa r ah hh
ae v e r r ey n j h f e r m
i y dx i y ng i h
s i l t uw s i l <eos>

The network produces:

Listing 2. Network output
<sos> s i l hh i h f s i l k i h r ow s i l
k ah m s i l s i l t ah m aa aa hh
hh v v e r ey n n s i l f f e r m
i y i y i y i y s i l
s i l t uw s i l s i l <eos>

Which bears some resemblance with the human labeling. The
levenstein distance over target length ratio is 0.36 for this ut-
terance. However over the entire test set 0.45 has been mea-
sured. This result is considerably better than the 0.55 which
where observed in the previous experiment using a much sim-
pler model with greedy decoding and input noise regulariza-
tion.

5. CONCLUSION

Based on the experimental evidence gathered we conclude
that the implemented listen attend and spell model is able to
recognize speech and determine relevant parts of input record-
ings. The attention weights computed by the model as well as
the actual labeling do resemble results obtained by human lis-
teners. This result suggests that [1] correctly claims that neu-
ral attention mechanisms can be used to align text to speech
data. In terms of network regularization dropout [5] has been
found to be a useful tool. Working network parameters turned
out to be scaled down versions of the ones stated in the orig-
inal las paper [1]. For the feedforward parameters which are
not mentioned it has been found that 64 or 128 units and one
hidden layer leads to convergence on timit. However the au-
thor is confident that further tuning and exploring deeper con-
figurations will lead to additional accuracy improvements.
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