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1
M O D E L I N G

In this report a state space model for a quadcopter is going to be de-
rived. After testing the model with some simple simulations, a LQR
controller based in this model will be designed. In oder to tackle a
weight disturbance, integrators are going to be added to this con-
troller. And finally to reach more realistic scenarios Kalman-Filtering
will be included into the design.

1.1 finding a state space model

We are going to use equations from Newtonian mechanics to derive
the model for the quadcopter. However since these equations are non-
linear and a linear model is desired the equation system will have to
be linearized. To do that an equilibrium point hast to be determined.
This point comes from the physics of the quadcopter, it will be in
equilibrium, when it is hovering at the origin with zero roll, pitch
and yaw angles. Mathematically this means:

x = y = z = 0 = φ = θ = ψ (1)

With this definition we can find our set of linear equations by first
order approximation:

d4x
dt

=
∂f

∂x
|xe,ue4x+

∂f

∂u
|xe,ue4u. (2)

In our state space model the matrix A will be multiplied with the
change of the states 4x summed together with the variation of the
input 4u times the B matrix it will give the next state of the system
at a given point in time. Thats why we can read of these two matrices
from equation 2. In practice a lot of partial derivatives have to be
found in order to compute A, and B. For brevity these will be skipped
here. The desired matrices are: In matlab A is given

by : A =

zeros(12);

A(1,4) = 1;

A(2,5) = 1;

A(3,6) = 1;

A(4,4) = -kd/m;

A(4,8) = g;

A(5,5) = -kd/m;

A(5,7) = -g;

A(6,6) = -kd/m;

A(7,10) = 1;

A(8,11) = 1;

A(9,12) = 1;.

A =



1

1

1
−kd

m g
−kd

m −g
−kd

m

1

1

1



(3)
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2 modeling

Twelve different states are included in the model. The system matrix
is therefore element of R12×12.In matlab B is given

by: B =

zeros(12,4);

B(6,:) =

(k*cm)/m;

B(10,1) =

(L*k*cm)/Ixx;

B(10,3) =

-(L*k*cm)/Ixx;

B(11,2) =

(L*k*cm)/Iyy;

B(11,4) =

-(L*k*cm)/Iyy;

B(12,1) =

(b*cm)/Izz;

B(12,2) =

-(b*cm)/Izz;

B(12,3) =

(b*cm)/Izz;

B(12,4) =

-(b*cm)/Izz;.

B =



kcm

m
kcm

m
kcm

m
kcm

m

Lkcm

Ixx
−Lkcm

Ixx
Lkcm

Iyy
−Lkcm

Iyy
bcm

Izz
−bcm

Izz

bcm

Izz
−bcm

Izz



(4)

The input matrix is multiplied by the input vector u and is added to
the product of system matrix and state vector. In this case it must be
of dimension 12× 4.

With the system and input matrix A,B known all that is left to
do is to find the output and feedtrough matrices and the state space
representation is complete. In real systems the feedtrough matrix is
always zero. This leads to D = 0. As we have six outputs and 4 inputs
the zero is the zero matrix of dimension 6×4. As the output is defined
to be y = [x,y, z,φ, θ,ψ]T . We choose our output matrix to pick these
values out of the state vector x = [x,y, z, vx, vy, vz,φ, θ,ψ]T :C may be

implemented using
the code: C =

zeros(6,12);

C(1,1) = 1;

C(2,2) = 1;

C(3,3) = 1;

C(4,7) = 1;

C(5,8) = 1;

C(6,9) = 1;.

C =



1

1

1

1

1

1


(5)

As the model has 6 outputs and 12 states C is element of R6×12. So
far the report included the state space matrices only in their symbolic
form. A numerical form is given in figure 1.

1.2 discretization and simulation

As the controller is going to be implemented on a small computer
within the quadcopter, a discrete state space model is required. Be-
fore discretizing the model it makes sense to perform some small
simulations to make shure the model leads to realistic values and is
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1.2 discretization and simulation 3

Figure 1: The state space Matrices in the matlab command window.
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Figure 2: step response of the linear and nonlinear model
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4 modeling

free of mistakes. Simulation results are given in figure 2. The linear
model responds to a step input like the nonlinear model. This is a
first indication, that the derived model is actually correct.

The discretization is done using bilinear transformations according
to the formulae:

Ad = (I−
ATs

2
)−1(I+

ATs

2
). (6)

Bd = (I−
ATs

2
)−1BTs. (7)

Cd = C(I−
ATs

2
)−1. (8)

Dd = D+C(I−
ATs

2
)−1BTs

2
. (9)

The result is identical to the return values of the built in matlab func-
tion c2d when it is run with the correct sample time Ts = 0.05 s and
the ’tustin’ option, which refers to the bilinear transformation.
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2
C O N T R O L D E S I G N

Armed with the discretized model we can now proceed to design a
controller for the quadcopter. The challenge is to track a given refer-
ence signal as accurately as possible, in order to do that the reference
will have to be introduced properly into the controller.

2.1 full state lqr

The reference signal will be handled by two matrices. Nx ∈ R12×3

which links the twelve states to the three entries in the reference vec-
tor and Nu ∈ R4×3, which links the three reference signals to the
four plant inputs. In oder to compute these crucial matrix gains we
consider the system:(

A− I B

Ĉ D̂

)(
Nx

Nu

)
=

(
0

I

)
(10)

However if C and D remain unchanged this approach will lead to
false dimensions. Thats why they are shown with hats in equation 10

above. Ĉ and D̂ are truncated versions of C and D containing only
their first three rows. With the dimensions fixed after computing a In the code Ĉ =

C(1:3,:) and
D̂ = D(1:3,:).

pseudo inverse Nx and Nu may be found from:(
Nx

Nu

)
=

(
A− I B

Ĉ D̂

)−1(
0

I

)
(11)

When looking at this equation it is important to keep in mind that
taking the pseudo inverse flips the dimensions to 16× 15 for the aug-
mented matrix, which is inversed. With the two reference gain matri-
ces found only the feedback gain Matrix K remains to be determined.
As in this project LQR control is used this gain is fund by minimizing
the cost function:

V =
∑

(xTQx + uTRu) (12)

In oder to find reasonable Q and R matrices, weights are introduced.
They are based on physical properties and may be used to change a
certain characteristic of the controller. The following weights where
used: A position weight wpos, a height weight wz a angle weight
wangle, a velocity weight wv, an angular velocity weight wangv, a
stability weightwstab and finally an input weightwinp. This leads to
the weighting matrixQ ∈ R12×12 with the vector q = (wpos,wpos,wpos ·

5
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6 control design
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Figure 3: The simulink template used for LQR-Control with full state feed-
back.

wz,wv,wv,wv,wangle,wangle ·wstab,wangle,wangv,wangv ·wstab,
wangv) on the diagonal. The input weight sits on the diagonal of theIn matlab this

matrix in implemted
using: Q =

diag(q);.

R ∈ R4×4 matrix. Increasing a weight will make that property more
important, as the optmization algorithm will put more effort into min-
imizing that particular variable. With these tuning parameters found
by systematic trial and error. The quadcopter is able to reach the way-
points on it’s path in within a two second average. Selected results
are shown in figure 4

1. However in a real setting one would probably
put more weight on the inputs and on stability to make sure actua-
tor saturation or flipping does not occur. However in this assignment
the goal was to finish the course as fast as possible so a very agres-
sive controller was designed. If a payload of 0.1 kg is added to the
quadcopter the results are not satisfactory. Actuators are saturated,
proper flight height is not reached and consequently all checkpoints
are missed.

1 The following weights where used: wz = 25,wpos = 9.5,wangle = 0.4,wv =

0.4,wangv = 1.1,wstab = 2,winp = 0.1.
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2.1 full state lqr 7
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Figure 4: Selected simulation results of the LQR controller without integra-
tion. The top view of the flight is shown in the top left. The evolu-
tion of the x,y and z coordinates are shown in the top right. The
control actions are shown in the bottom left. The development of
the quadcopter angles are shown in the bottom right.
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8 control design
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Figure 5: The simulink template of the controller with integral action.

2.2 full state lqr with integrator

In order to be able to fly with payload and possibly even speed up
the flight time of the quadcopter without payload a controller with
integrator is going to be set up. In order to do that extra states are
added to the system which integrate the control error ek = yk − rk.
This leads to the augmented state equations:(

xIk+1

xk+1

)
=

(
I Ĉ

0 A

)(
xIk

xk

)
+

(
D̂

B

)
uk −

(
I

0

)
rk (13)

Again Ĉ and D̂ denote the truncated versions of C and D. The system
remains controllable2. The layout used to add integral action to the
controller is given in figure 5. It implements the control law:

uk = −
(
Ki Ks

)(xIk
xk

)
. (14)

Again K = (Ki Ks) is computed by minimizing the cost function 12.
However an additional weight for the integrated error wint has to be
introduced. These weights occupy the first three spots of Q ∈ R15.

2 The rank of the controllability matrix C(A,B) = (B AB A2B . . . An−1B) remains 15.
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2.3 lqg with kalman-filtering 9
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Figure 6: Selected simulation results of the LQR controller with integration
and a payload of 0.1 kg. The top view of the flight is shown in the
top left. The evolution of the x,y and z coordinates are shown in
the top right. The control actions are shown in the bottom left. The
development of the quadcopter angles are shown in the bottom
right.

Results with the optimized K with payload are shown in figure 6
3.

The quadcopter is able to handle the payload with integral control.
However the average time until a checkpoint is reached increases to
4.46 s without payload and to 4.6 s with payload.

2.3 lqg with kalman-filtering

In the previous sections we where feeding back the state vector. How-
ever in practice it is often impossible to measure the entire state vec-
tor. Therefore some states have to be estimated before the state vector
can be fed back to the controller. This estimation is done by using
Kalman-Filtering. Kalman filtering estimates the current state by us-
ing measurement and model information. It starts by computing the

3 The following weights where used: wint = 2, wz = 1, wpos = 1, wang = 5, wv =

1, wangv = 1.1, wstab = 10, winp = 2
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10 control design

model output to the inputs that are actually fed into the plant. The
plant output is fed back into the filter, where it is compared to the
predicted output. The estimated states are then corrected according
to the prediction error found from the predicted output and the mea-
sured output. In order to do this correction properly information on
the noise in the system is required, namely the covariance matrices
of the process and measurement noise is necessary to compute the
Kalman-gain. The Kalman gain weights the effect that observation
and prediction have and the state estimation. If the measurements
are of very high quality a large gain should put the weight here. On
the other hand if there is a lot of noise on the measurements and little
noise in the process a low gain should put more weight on the model
prediction.

2.3.1 Matlab’s default filter block

In order to choose the noise covariance matrices in this example white
Gaussian noise is assumed, since no further information on the noise
distribution is available. Therefore as Gaussian white noise is only
correlated with itself the covariance matrices will be diagonal, withCovariance is

generalisation of
correlation with

mean adjustment

specific noise variances on the diagonal. For the measurement noise
the specific variances are known, σ2pos = 2.5 · 10−5 on the position
measurements and σ2ang = 7.57∗10−5 on data from the angle sensors,
this leads to the measurement noise covariance matrix with the vector:

qvar =
(
σ2pos σ2pos σ2pos σ2ang σ2ang σ2ang

)T
(15)

on the diagonal. No data is available for the process noise. After some
testing with low variance values on the diagonal it turns out that the
process covariance matrix with σ2state = 10−6 on the diagonal pro-
duces good results as shown figure 8. The simulation was run with
a payload of 0.1kg. The filter turns out to be very robust. After some
retuning of the controller the quadcopter takes almost no additional
time to fly trough the parcour with payload in comparison to integral
control with full state feedback. However the noise is clearly visible
in the angle measurements. If the payload is removed the quadcopter
is able to fly faster, overall tracking performance remains unchanged.

2.3.2 Manual Kalman filter design

In order go gain additional insight into the way the Kalman filter
works the default block will now be replaced by a combination of
standard blocks which produce the same result. In order to obtain
the required setup we implement the equation:

x̂k+1|k = Ax̂k|k−1 +Bu(k) + Lk(yk −Cx̂x|k−1). (16)
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2.3 lqg with kalman-filtering 11
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Figure 7: Control template with Kalman filter.

Where A, B and C are the discretized system matrices. Lk denotes
the Kalman gain, which weights the plant measurements as described
earlier. The simulation template is given in figure 9. The simulation
results are similar to what was obtained by using the default block.
However the size of the process noise covariance matrix changes. In
this setting it is assumed, that the process noise enters the filter trough
the inputs. Additionally this implementation is not as robust as the
default block. In order to be able to correctly fly with the payload the
noise covariance matrix has to be rescaled. Which leads to the new
process noise matrix Q = 3 · 10−2 · I4×4.
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12 control design
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Figure 8: Selected simulation results of the LQR controller with integration,
a payload of 0.1 kg and state estimation trough Kalman-filtering.
The top view of the flight is shown in the top left. The evolution
of the x,y and z coordinates are shown in the top right. The con-
trol actions are shown in the bottom left. The development of the
quadcopter angles are shown in the bottom right.
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2.3 lqg with kalman-filtering 13
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Figure 9: Kalman filtering using only delay, gain, and summation blocks
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3
C O N C L U S I O N

In this report went trough all the major steps of the control-design-
process. It started with model generation and linearizion, continued
with discretization and finally looked at controller design in three
different settings:

1. LQR control without integrator and full state feedback.

2. LQR control with integrator and full state feedback.

3. LQR control with integrator and LQE.

In all three settings satisfactory control results where achieved. How-
ever only in the first setting was the controller tuned for speed. Fur-
thermore did it turn out to be impossible to come up with a controller
that could handle the payload without using an integrator. So in the
first case excellent results where observed under optimal conditions.
Unfortunately did the controller turn out very vulnerable to distur-
bances without an integrator. With integration added disturbances
like the payload could be handled well by the controllers that where
set up. Unfortunately the agility that came from pure LQR control
was no achieved with integration, however spending more effort an
tuning a more aggressive controller might change the situation. Sur-
prisingly did the situation change little with state estimation. Only
small delays occurred when the full state vector was estimated from
the model and the plant outputs before it was fed back into the con-
troller. Overall the project turned out very helpful in gaining some
first experience in digital control design.

15
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