
FACULTY OF ENGINEERING

Computer Graphics
Project Report

Moritz Wolter
May 30, 2016

Contents

1 Essentials 2
1.1 Geometry . 2

1.1.1 The triangle primitive . 2
1.1.2 The plane primitive . 3
1.1.3 The sphere primitive . 4

1.2 Object Transformations . 4
1.3 Point Lights . 5
1.4 Shading . 6
1.5 Camera . 6
1.6 Python or Java . 6

2 Textures and acceleration 8
2.1 Acceleration . 8

2.1.1 Middle-Split . 8
2.1.2 Split a sorted list . 8
2.1.3 Surface area heuristic . 9
2.1.4 Intersection testing . 9
2.1.5 Results . 9

2.2 Textures . 11
2.2.1 Procedural texturess . 11

3 Special Effects 14
3.1 Common part . 14

3.1.1 Anti-aliasing . 14
3.1.2 Area Lights . 14

3.2 Special effects . 15
3.2.1 Normal Mapping . 15
3.2.2 Physical materials . 16
3.2.3 Importance Sampling . 19

3.3 Conclusion . 22

1

Milestone 1

Essentials

1.1 Geometry

1.1.1 The triangle primitive

This section focuses on the basic math of ray tracing. In a ray tracer so called primary
rays are shot from a camera onto a scene. Irreducible objects or geometric primitives are
defined. These make up a scene. In order to compute an image from this given scene, the
ray-object intersection point closest to the camera has to be found. Various primitives
have been implemented the most important one is the triangle. As triangle meshes can
be used, to approximate more complex shapes. A triangle is defined by the three points
a,b, c, that make up its edges. If the edges are ordered counterclockwise the triagle
normal can be computed using the formula: 1

n = (b− a)× (c− a)/‖(b− a)× ((c− a)‖. (1.1)

To find triangle intersection points barycentric coordinates (α, β, γ) are used. These
coordinates allow to describe any point in the plane of the triangle as:

p(α, β, γ) = αa+ βb+ γc, (1.2)

with α + β + γ = 1. (1.3)

If p is inside of the plane the inequalities,

0 < α < 1, 0 < β < 1, 0 < γ < 1, (1.4)

are satisfied. By substituting α = 1− β − γ into the equation and setting p = r(t) with
r = o+ t · d for a ray the following equation is obtained:

o+ td = a+ β(b− a) + γ(c− a). (1.5)

Which can be brought into the form Ax = b with x =
(
β γ t

)T
:ax − bx ax − cx dx

ay − by ay − cy dy
az − bz az − cx dz

β
γ
t

 =

ax − ox
ay − oy
az − oz

 . (1.6)

1This section in based on Ray Tracing from the gound up page 362 and onward.

2

MILESTONE 1. ESSENTIALS 3

Equation 1.6 could in principle be given to a linear algebra subroutine for solution. If
the inequalities 1.4 are satisfied and t > ε. Where epsilon is a small positive number
used to prevent self intersection. A valid intersection has been found. However this is
not the most efficient way to proceed. Always solving the whole equation system is not
necessary all the time. Using Cramers rule the a set of equations can be derived and the
intersection method can return as soon as one condition is violated. This way unnecessary
computations can be avoided. 2

1.1.2 The plane primitive

Another important primitive is the plane. These objects can be defined by a normal n
which determines the orientation of the plane and a which determines where it is.3 For a
point p on the plane, the condition

(p− a)Tn = 0 (1.7)

must hold. This is the same as asking for the cosine of the angle between the vector on
the plane and normal to be zero. Or equivalently saying that the vectors (p − a) and n
must form a 90◦ angle. To check if a given ray intersects a plane the ray must be plugged
into equation 1.7 which yields:4

(o+ td− a)Tn = 0. (1.8)

Solving for t then leads to:
t = (aTn− oTn))/(dTn). (1.9)

If then t > ε a valid intersection was computed. The exact location of the hit point can
be found from the ray equation p(t) = o+ td.

The rectangle primitive

A rectangle is simply a subset of all the points contained in a plane therefore the same
equations can be used. Additionally the conditions

‖px‖ < 1.0, ‖py‖ < 1.0, (1.10)

have to be enforced to turn a the x,y-plane into a rectangle around the origin. This unit
plane can later be rotated and scaled using transformations to fit into a desired scene.

The circle primitive

A circle in the x,y plane is obtained by a procedure analogue to the one which lead to
rectangles if instead the condition √

p2x + p2y < 1.0 (1.11)

is used. This circle can similarly be transformed to fit into any scene.

2See Ray Tracing from the Ground up page 366 for further details.
3Ray Tracing from the ground up page 31.
4Ray Tracing from the Ground up page 54.

MILESTONE 1. ESSENTIALS 4

1.1.3 The sphere primitive

A sphere is a set of points located within a given distance r around a specified point c.
For any point p within this sphere the condition:

‖p− c‖ ≤ r (1.12)

or (p− c)T (p− c) ≤ r2 (1.13)

must hold. For a sphere around the origin with radius one c = 0, r2 = 1 and substituting
p = o+ td the expression below is obtained:

(o+ td)T (o+ td)− 1 = 0 (1.14)

Now using an equality instead of an inequality to compute the intersection with the outer
bound of the sphere. The distributive property of the dot product leads to:

t2dTd+ 2toTd+ oTo− 1 = 0. (1.15)

The obtained quadratic equation can be solved using standard methods with:

a = dTd (1.16)

b = 2dTo (1.17)

c = oTo− 1 (1.18)

then t =
−b±

√
b2 − 4ac

2a
(1.19)

It is possible for learn the number of intersections from the discriminant d = b2 − 4ac. If
d < 0 there will be no intersections, one if d = 0 and two if d > 0. If two intersections are
found the one with the smaller t should be used, as it will be closer to the camera.5

1.2 Object Transformations

In order to move, rotate or scale the objects defined earlier four dimensional transforma-
tion matrices are defined. Four dimensions are used, as three dimensional translations
can be expressed as a matrix operation.
Scaling can be done by using6:

Tscale =

a

b
c

1

 T−1
scale =

1/a

1/b
1/c

1

 (1.20)

Translation is working with:

Ttranslate =

1 dx

1 dy
1 dz

1

 T−1
translate =

1 −dx

1 −dy
1 −dz

1

 (1.21)

5Ray Tracing from the Ground up page 57
6Ray Tracing from the ground up page 404

MILESTONE 1. ESSENTIALS 5

Rotation around the tree axes:

Tx =

1

cos(θ) − sin(θ)
sin(θ) cos(θ)

1

 (1.22)

Ty =

cos(θ) sin(θ)

1
− sin(θ) cos(θ)

1

 (1.23)

Tz =

cos(θ) − sin(θ)
sin(θ) cos(θ)

1
1

 (1.24)

(1.25)

The inverse rotations can be obtained by using −θ in place of θ or by transposing the
matrices. Several transformations can be combined by matrix multiplication.
Instead of transforming objects it is common practice in ray tracing to transform rays.
Prior to intersection testing a ray (r(t) = o + td) is multiplied with the inverse trans-
formation matrix. The obtained transformed ray is then intersected with the unchanged
object. The hit point is found and transformed back into the original space using the
transformation matrix. 7 For normals the process is slightly more complicated. 8 In
the unchanged space the normal must be orthogonal to infinitely small vectors along the
surface nTm = 0. The same must be true for the transformed space n′Tm′ = 0. Like
points differences between points will be transformed by the original transformation ma-
trix Tm = m′. Furthermore a matrix multiplied with its inverse is the identity T−1T = I.
This leads to the derivation:

nTm = 0 (1.26)

nT Im = 0 (1.27)

nTT−1Tm = 0 (1.28)

(nTT−1)(Tm) = n′Tm′ = 0 (1.29)

(nTT−1)(Tm) = n′T (Tm) (1.30)

nTT−1 = n′T (1.31)

⇒ n′ = T−Tn (1.32)

Thus normals will be transformed by the transposed inverse transformation matrix.

1.3 Point Lights

Point lights emit light from a single point only. To create a point light its location pl,
color cl and intensity ls have to be stored.

7Ray Tracing from the Ground up page 418.
8 Fundamentals of Computer Graphics, Lecture 3 Transformations, Philip Dutré, slide 60

MILESTONE 1. ESSENTIALS 6

1.4 Shading

Shading with respect to point lights can be done with a simplified form of the rendering
equation. Taking only into account ambient and distance attenuated direct illumination
one arrives at:9 10

L(p, ω) = ρacd · (lscl) +
n∑

j=1

(ρdcd/π) · (ls,jcl,j)(nT lj)/(d
2
j) · V (p,pl,j) (1.33)

With ρ describing the material reflectivity with respect to ambient or diffuse illumination.
Light intensity is denoted by l. The c vectors represent r,g,b color values, n denotes the
normal vector. The vector ω points from p to the camera and l to the light source. Finally
the visibility function V is one if the location of the point light pl is visible from the object
intersection point p and zero if not.

1.5 Camera

In this project a perspective camera is used. To set it up the resolution (rx, ry), origin
e, view direction l , spacial orientation up and the field of view angle δ have to be
provided. Using δ and the resolution data the width w and hight h of the view plane can
be computed:

w = 2 · d tan(δ/2) (1.34)

h = ry · w · 1/rx (1.35)

The view plane distance can be kept at d = 1 for all practical purposes. Changing d
would change the zoom of the camera just like changing the view angle does. Making d
a variable user parameter would therefore have no additional value. In order to describe
the view plane and generate primary rays more easily the camera coordinate system is
used. This system is set up using:

w = (−1) · l (1.36)

u = (up×w)/‖up×w‖ (1.37)

v = w × u (1.38)

In this coordinate system points on the view plane can be expressed in terms of u and v,
which in turn become primary ray directions if w is subtracted. With the known camera
position as the ray origin all necessary information to generate primary rays is available.

1.6 Python or Java

In this section two basic ray tracing implementations using only diffuse shading without
shadows in Java and Python will be compared. A scene consisting of a plane with a
chess like procedural texture as well a two spheres will be set up in both languages. The

9Ray tracing from the ground up page 265.
10Computergrafiek Project sessie 1 page 41.

MILESTONE 1. ESSENTIALS 7

Figure 1.1: Two similar scenes rendered using comparable rendering code in Java and
Python .

rendered 600x600 pixel images are shown in figure 1.1. With the result of the java code on
the left and the python version on the right. The first image took 1.18s to compute while
the second was ready after 16.61s. The python code is executed faster if it is run a second
time as compiled python files will be generated, but for this scene it never falls under
10s. A popular method to speed up python code is to use the typed Cython dialect.11

However cythons multi-threaded capabilities are limited due to pythons global interpreter
lock, additionally cython compiled classes can only be accessed from compiled code, which
leads to a significant extra amount of code conversion work. Therefore the remainder of
the project was done exclusively in Java. Javas strong typing avoids the python overhead
which slowed down the ray tracing process considerably, as the python interpreter looses
a lot of time determining the type of every object.

11Cython: The Best of Both Worlds,Computing in Science & Engineering, S. Behnel; R. Brad-
shaw et al., Computing in Science & Engineering http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=5582062

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5582062
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5582062

Milestone 2

Textures and acceleration

2.1 Acceleration

Rendering the triangle meshes quickly becomes a time intensive task if the triangles
forming the model are stored in a simple list. For example the scene shown in figure 2.1
consists of the Utah teapot standing on a plane, illuminated by a point light. Rendering it
without an acceleration structure with enabled shadows takes approximately 1151 seconds
or 19 minutes and 11 seconds. A first measure to improve matters is to surround the mesh
with a box. Only if an incoming ray hits the box is it intersected with the triangles of the
mesh. Using a bounding box reduces the rendering time to 613 seconds or about 10 min
for scene 2.1. To reduce computations required to render the scene further the number
of intersection tests per pixel has to be reduced. This can be done by subdividing the
bounding box. Three different ways of subdivision will be considered. All of them start
by finding the longest dimension of the box, but differ in the way this longest dimension
is split.

2.1.1 Middle-Split

The first method splits the parent box into two children in the geometric middle of the
longest axis. After the split the triangles are assigned to the left or right sub-box according
to the position of their centroid. The two subboxes are then resized to ensure that no
triangle vertices’s lay outside the two boxes. After the resizing operation it is possible,
that the two boxes overlap.

2.1.2 Split a sorted list

The second method sorts the triangles contained in the box according to their centroid
coordinate of the axis under consideration. The dimensions of the child boxes are then
obtained by splitting the sorted list in the middle and assigning each child half of the
triangles. The new boxes are then resized such that they contain all of their triangles
entirely.

8

MILESTONE 2. TEXTURES AND ACCELERATION 9

read[s] split[s] render[s] total[s]
Middle-Split 0.16 0.95 23.61 24.72
Sort-Split 0.17 0.06 30.47 30.7

SAH 0.16 0.18 17.27 17.61

Table 2.1: Time measurments taken using various splitting methods when rendering the
teapot scene.

read[s] split[s] render[s] total[s]
Middle-Split 11.4 3.7 10.53 25.63
Sort-Split 10.6 4.6 20.5 35.7

SAH 11.0 14.3 6.71 32.01

Table 2.2: Time measurments taken using various splitting methods when rendering the
stanford dragon scene.

2.1.3 Surface area heuristic

Finally the surface area heuristic is considered, which splits along several points and
chooses from a set of available options by evaluating the cost function:

cost = Nleft ·
Sleft

Stotal

+Nright ·
Sright

Stotal

(2.1)

Where N denotes the number of primitives in a given box and S its surface along the
dimension under consideration. Before the cost function can be evaluated the parent box
is split along its longest edge cSAH times, and cSAH + 1 child boxes are created. The
child boxes of each side of the cut are then combined and resized and the cost function is
evaluated for each combination. Finally the combination with the lowest cost is chosen.

2.1.4 Intersection testing

In order to avoid unnecessary computation work it is important to avoid intersecting
boxes, where a visible hit cannot be found. To do this a ray is always intersected first
with the box having the centroid closer to the camera. If the difference between the two
centroid distances is larger then a predefined constant, the second box is only considered
if an intersection found in the first box lies in a space where both boxes overlap.

2.1.5 Results

Table 2.1 shows the timing results of the three implemented splitting methods. Consider-
ing the decrease from the initial 10 minutes the reduction of rendering time is impressive
for each method. The surface area heuristic is the best choice here as its tree is the most
efficient and the additional time needed to construct it does not make a difference in
this example. Table 2.2 shows the situation for the dragon scene. Here the surface Area
heuristic is still the most efficient in terms of rendering time, but it looses during the tree
generation phase. These results indicate, that there is still room for further optimization
of the SAH-tree generation function.

MILESTONE 2. TEXTURES AND ACCELERATION 10

Figure 2.1: Utah-Teapot rendered image and false color visualizations of the intersections
with a color map maximum at 180 intersections, with 10 SAH cuts per split.

Figure 2.2: High resolution Standford-Dragon model consisting of 871306 triangles. Ren-
dered image and false color visualizations of the intersections with a color map maximum
at 180 intersections and 4 SAH cuts per split

MILESTONE 2. TEXTURES AND ACCELERATION 11

Figure 2.3: Apple on chessboard

2.2 Textures

In order to use textures each object hit point has the be associated with coordinates
in the u, v texture space. For wavefront (.obj) these coordinates come from a data file
along with the triangle-mesh data. It is important to note that the coordinate system for
wavefront objects is located at the top left of the image file. With that in mind textures,
which sometimes come shipped along with .obj-files can be used. An apple texture is
shown in figure 2.3. In the same image a procedural texture is used for the plane.

2.2.1 Procedural texturess

The chess-board like pattern is generated by dividing the u and v coordinate by the desired
size of the rectangles. If the rounded results of the division are added and the modulo
with two is computed every point can be associated with one or zero. Which serves as
the criterion to choose the texture color.

Julia-set textures

More interesting patterns can be computed by using fractals. Often used examples are
Julia fractals found from functions of the form:

f(z) = z2 + c z ∈ C (2.2)

Where c is considered the seed. Changing c changes the appearance of the fractal drasti-
cally. Julia sets are generated by applying the function f(z) to itself repeatedly, compute
f(z), f(f(z)), f(f(f(z))), This process is repeated until the iteration exceeds a pre-
defined limit value ‖zn‖ > k, or a maximum number of iterations is reached. Each point
is then colored according to how many iterations n it took to reach the limit k. The
logarithm of the iterations counter is hashed linearly from 0 to the largest occurring value
to colors. Plots with c = −0.07, 0.652, c = −0.02, 0.652, c = −0.02, 0.8 with the initial
zinit ∈ [−1, 1] and k = 1 are given in figure 2.4.

MILESTONE 2. TEXTURES AND ACCELERATION 12

Figure 2.4: Julia fractals using different seeds and colormaps.

Function meshes

To obtain a 3d visualization of a function, a triangle mesh can be computed from grid
data. The mesh can be set up by assembling triangles following the rule:

p1 = {x[i], y[j], fn(x[i] + i · y[j]} (2.3)

p2 = {x[i+ 1], y[j], fn(x[i+ 1] + i · y[j])} (2.4)

p3 = {x[i], y(j + 1), fn(x[i] + i · y[j + 1])} (2.5)

p4 = {x[i+ 1], y(j + 1), fn(x[i+ 1] + i · y[j + 1]} (2.6)

tri1 = {p1, p2, p4} (2.7)

tri2 = {p1, p4, p3} (2.8)

(2.9)

Which is assuming that the x and y values are stored in vectors and that fn has been
stored in a two dimensional matrix-array. Then the meshes’ triangles can be constructed
by looping over the expressions outlined above. The triangle vertices are stored in a
counterclockwise order. Thus the normals follow from equation 1.1. The result of setting
up such a mesh consisting of (2∗ (N −1))2 with N = 800 triangles using the inverse value
of the logarithmic iteration counter as z-coordinate is shown in figure 2.5. A top down
view is shown on the left and a 3d perspective view computed from intersecting the mesh
on the right.

MILESTONE 2. TEXTURES AND ACCELERATION 13

Figure 2.5: Top and 3d view of the Julia fractal computed from f(z) = z2 + c with
c = −0.1, 0.651.

Figure 2.6: Top and 3d view of the Julia fractal computed from f(z) = z2 + c with
c = −0.8, 0.175.

Milestone 3

Special Effects

3.1 Common part

3.1.1 Anti-aliasing

In computer graphics using raster images can lead to ”stairstepping” or aliasing. Aliasing
can generally be replaced by noise, if the ray origins are randomly placed inside a pixel.
Fully random placement of the ray-starting point is not optimal, as the randomly dis-
tributed pixels can clump together and leave some areas poorly sampled. Therefore each
pixel is subdivided into sub-areas and each sub-area is given one sample. This is called
jittered sampling.

3.1.2 Area Lights

In contrast to point lights, area lights have a surface. In order to solve the rendering
equation for scenes lit by area lights, the area form is considered 1:

Lr(p, ω0) =

∫
Alight

fr(p, ωi, ω0)Le(p
′,−ωi)V (p,p′)G(p,p′)dAp′ (3.1)

The above equation allows it to find the outgoing light at a primary ray intersection
point p. Given the reflection orientation vector ω0 and the incoming light direction
ωi = (p − p′)/‖p − p′‖. The visibility function V (p′,p) is one if point p is visible from
point p′ and zero if not. The geometry term G is given by:

G =
cos(θi)cos(θ

′)

‖p′ − p‖2
(3.2)

With cos(θi), cos(θ
′) given by nT

pωi and nT
p′(−ωi) respectively. Finally p′ must be a

random point within the area light source. The solution of the rendering equation can be
estimated by using Monte-Carlo integration:

Lr(p, ω0) ≈
1

ns

ns∑
j=1

fr(p, ωi,j, ω0)Le(p
′,−ωi,j)V (p,p′

j)G(p,pj
′)

p(p′)
(3.3)

1Ray Tracing from the ground up page 329

14

MILESTONE 3. SPECIAL EFFECTS 15

Figure 3.1: A spherical area light causing smooth shadows on a sphere

Figure 3.2: A rectangular area light illuminating the Utah teapot

Here ns denotes the number of samples, and p(p′) the probability density function. The
simplest choice is to distribute the samples uniformly which leads to p(p′) = 1

Al
. A scene

with a spherical and planar light source is shown in figure 3.1. Using area light sources
leads to smooth shadows, like those caused by the cubes on the earth’s surface.

3.2 Special effects

3.2.1 Normal Mapping

In order to add additional normal information or speed up the rendering of wavefront
objects, normal data can be loaded from a file. The normal-information is coded as:

cr = 0.5 + 0.5 · nx

cg = 0.5 + 0.5 · ny

cb = 0.5 + 0.5 · nz

MILESTONE 3. SPECIAL EFFECTS 16

Figure 3.3: Stanford-Dragon on plane rendered using a high resolution mesh (left) and
low resolution mesh with normal map(right).

which can be transformed back using:

nx = −1.0 + 2 ∗ (cr/255) (3.4)

ny = −1.0 + 2 ∗ (cg/255) (3.5)

nz = −1.0 + 2 ∗ (cb/255) (3.6)

The normal information can then be used for rendering purposes. In case of the Stanford
dragon shown in figure 3.3 it took 32s for the high resolution mesh and 6.02s for the low
resolution mesh with normal map to produce the same result.

3.2.2 Physical materials

An important factor in improving the quality of the rendered images is the bidirectional
reflectance distribution function (brdf) fr(p, ωi, ω0). The brdf-model may be split into a
diffuse and specular component

fr(p, ωi, ω0) = fd(p, ωi) + fs(p, ωi, ω0). (3.7)

In this project a lambertian

fd(p, ωi) =
ρd
π
cos(θi) (3.8)

model is used for diffuse part. θi denotes the angle between incoming light and surface
normal. The cosine term can be computed using nT

pωi = cos(θi). For the specular part a
Phong reflection model

fs(p, ωi, ω0) = ρs(r
Tω0)

e (3.9)

is considered.2 The vector r denotes the mirror reflection direction. Furthermore a Cook-
Torrance model for the specular part has been implemented. This model is taken from

2Ray Tracing from the ground up page 281

MILESTONE 3. SPECIAL EFFECTS 17

their original 1982 publication: 3

h =
c+ ωi

‖c+ ωi‖
(3.10)

c = cTh (3.11)

g =
√
n ∗ n+ c ∗ c− 1 (3.12)

n =
1 +

√
f0

1−
√
f0

(3.13)

F =
1

2

(g − c)2

(g + c)2
(1 +

[c(g + c)− 1]2

[c(g − c) + 1]2
) (3.14)

α = cos−1(hTnp) (3.15)

D =
1

m2cos4(α)
e[−(tan(α)/m)]2 (3.16)

G = min(1,
2(nT

ph)(n
T
pc)

(cTh)
),
2(nT

ph)(n
T
pωi)

(cTh)
) (3.17)

fs(p, ωi, c) =
ρs
π

DG

(nT
pωi)(nT

pc)
F (c, g) (3.18)

(3.19)

The model depends on the two input parameters f0 and m as well as the scaling factor
ρs. The first input is the value of the Fresnel-equation at normal incidence. The second is
the root mean square slope m of assumed material facets. The smaller both parameters
become the less mirror like will the resulting material will be. The vectors c, ωi point to the
camera and the light source respectively. The vector h represents the normalized vector
in the direction of the angular bisector of the view and light orientation vectors. The c
variable stands for the cosine of the angle between c and h or ωi and h. The Fresnel term
F determines how light is reflected from each of the assumed smooth micro-facets. A facet
slope distribution function D is used. This term depends on the angle between np and h
called α. Finally the geometric attenuation factor G is the last term required to compute
the Cook-Torrance BRDF. Gerhard Richter’s design of the cologne cathedral’s south
window and the light effects it produces is shown in figure 3.4. Inspired by the design a
rectangular light source with pseudo-randomly distributed squares has been created. This
area light source is placed at a ninety degree angle on top of a floor plane. The Specular
brdf-component of the floor plane will be varied. First Phong’s model is used.

Results are shown in figure 3.5. It can be observed that the larger the Phong-exponent
e is chosen, the more pronounced the reflection becomes. Which makes sense as with larger
values for e the set of possible incoming light vectors at p with large specular contribu-
tions becomes smaller and smaller. Therefore the largest specular contributions come
from only a small set of sample points p′ on the light source, which are close to each
other. Therefore one expects to see more detailed reflections for larger values of e.

In the images shown in figure 3.6, the Phong model, has been replaced with a Cook-
Torrance model for specular reflection. It can be observed that the larger m is chosen the

3A Reflectance Model for Computer Graphics, Robert L. Cook, Kenneth E. Torrance, ACM Transac-
tions on Graphics, Vol. 1, No. 1, January 1982, Pages 7-24

MILESTONE 3. SPECIAL EFFECTS 18

Figure 3.4: Gerhard Richter’s southern wing main window of the cologne cathedral con-
sisting of 11.500 pixels colored using 72 different colors and pseudo-randomly arranged.
On the right the lighting effect of the window on the cathedral floor can be seen.

Figure 3.5: Importance sampling of Phong’s specular reflection model using e = 100(left),
e = 500(middle), e = 2000(right). In all cases ρd = 0.8 and ρs = 0.2

Figure 3.6: Scenes computed using Cook-Torrance specular reflection models with pa-
rameters f0 = 0.0366,m = 0.276 (left), f0 = 0.025,m = 0.076(middle), f0 = 0.03,m =
0.01(right). In all cases ρs = 0.2 and ρd = 0.8

MILESTONE 3. SPECIAL EFFECTS 19

0 10 20 30 40
0

5 · 10−2

0.1

0.15

0 10 20 30
0

20

40

60

80

Figure 3.7: Discrete probabilities for 36 light source partitions (left). Right histogram
of 500 samples drawn from this distribution using the discrete version of the inverse
transform method.

less visible reflection details become. Which is to be expected as m models the root mean
square slope of model material facets, and the larger these slopes are the more bumpy
and therefore less mirror like the material will be.

3.2.3 Importance Sampling

In oder to reduce the amount of samples required to come close to a decent approximation
of the solution importance sampling is used. It’s key concept is to distribute the sample
points p′ on the light source according to their contribution to the solution, important
areas of the light should be sampled more often than insignificant ones. To achieve this
goal the light source is subdivided into parts. A random point of each part is sampled
and an importance fraction

qj = ij/Itot (3.20)

consisting of the sampled importance function values over the total sum Itot =
∑N

i=0 ij is
computed. These fractions generally add up to one, except for cases where the total sum
is very small, which can cause numerical problems. If the fractions add up to one they can
be interpreted as a discrete probabilities of a random variable X, while P (X = xj) = qj.
A realization of X can then be generated by using: 4

i−1∑
j=0

qj ≤ U <

i∑
j=0

qj. (3.21)

Here a uniformly distributed random variable U ∈ (0, 1) is generated first. X is then
set to X = xi if the condition above holds. This can be seen as a way of mapping the
uniformly distributed space (0, 1) into the discrete distribution space given by the set of
{qj}, by computing the discrete cumulative probability density function and mapping U
into it. Figure 3.7 shows the effect of transforming a uniformly distributed variable the
way described above. It can be observed that the histogram resembles the shape of the
discrete probability density function. During the Monte-Carlo estimation of the integral
the probability term in the denominator changes to p(p′) = qj · pj(p′) with pj(p

′) = 1
Aj

and Aj the area of the sub-light.

4Marko Boon, Technische Universiteit Eindhoven, 2WB05 Simulation Lecture 8: Generating random
variables, page 17. http://www.win.tue.nl/~marko/2WB05/lecture8.pdf

http://www.win.tue.nl/~marko/2WB05/lecture8.pdf

MILESTONE 3. SPECIAL EFFECTS 20

Figure 3.8: Rendering of the pixelated window scene using 2500 samples per intersection
point.

Error analysis

This section is devoted to an analysis of the convergence behavior of the rendering equation
given the scene consisting of the pixeled light source illuminating a plane. Mean square
error computations are used to judge the degree of convergence in various images. In this
report the mean square error is defined as

emse =
1

N

N∑
i=0

1

3

2∑
j=0

(p1,i,j − p2,i,j)
2. (3.22)

Figure 3.8 shows two images which where rendered using 2500 uniformly distributed
samples on the light source. In the right image an additional point light has been added
to illuminate the wall behind the area light source. Using this large amount of samples
it can be assumed, that the solution of the rendering equation has converged to a point
where the solution does not vary anymore. Using a similar low resolution images with 200
by 200 pixels, a series of experiments is conducted to verify the quality of the implemented
methods. Using the importance function

fimp = G · (fdiffuse + fspecular). (3.23)

The scene shown in figure 3.8 has been computed hundred and fifty times with the number
of area light samples linearly increasing. The results are shown in figure 3.9. With no
shadows in the image the importance sampling algorithm does deliver better results in
comparison to pure Monte-Carlo estimation for any number of samples tried. Increasing
the number of partial light sources leads to faster convergence, at the expense of longer
computation times as illustrated in the plots in 3.10. In figure 3.11 results of the scene
shown in figure 3.8 on the right are shown. With a significant part of the plain covered by
shadows importance sampling looses it’s edge. It produced results on par with uniformly
distributed samples, while taking more time on average. This is probably due to the
fact that this importance function used so far does only take geometry into account,
and assumes V (p,p′) = 1, so it does not allocate fewer samples in areas which lie in

MILESTONE 3. SPECIAL EFFECTS 21

0 50 100 150
0

100

200

300

400

#samples

m
se

0 50 100 150
0

5

10

#samples

ti
m
e
[s
]

Figure 3.9: Convergence and computation time of Monte-Carlo integration with (red)
and without (blue) priority sampling for the scene shown in figure 3.8 on the left. Using
linearly increasing numbers of light source samples.

0 100 200 300

20

40

60

#light-sources

m
se

0 100 200 300

4

6

8

10

#light-sources

ti
m
e
[s
]

Figure 3.10: Convergence and computation time of Monte-Carlo integration priority sam-
pling for the scene shown in figure 3.8 on the left. For different numbers of light sources
with 50 samples in total.

0 20 40 60 80 100
0

100

200

300

#samples

m
se

0 20 40 60 80 100
0

5

10

#samples

ti
m
e
[s
]

Figure 3.11: Convergence of Monte-Carlo integration with (red) and without (blue) pri-
ority sampling for the scene shown in figure 3.8 on the right. Using linearly increasing
numbers of light source samples.

MILESTONE 3. SPECIAL EFFECTS 22

Figure 3.12: Plain Monte Carlo (red) and importance sampled Monte-Carlo with 121
subdivisions (blue). Results for 1,11,21,51,101 and 501 samples are shown from left to
right. The plane material is given by ρdiff = 0.8, ρspec = 0.2, fct(0.015, 0.01).

the shadow of the two new objects and do not contribute to the solution. In general the
importance sampling method implemented here could be improved further, for example by
finding better importance functions, which in turn could yield better sample distributions
leading to faster convergence. It has been shown that the importance sampling method
implemented here works better than plain Monte-Carlo integration for scenes where not
too much area is covered by shadows and small sample numbers. For larger numbers of
samples the two methods deliver similar results, depending on the arrangement of objects
plain Monte-Carlo can be the better choice due to its faster execution time.

Figure 3.12 shows a uniformly sampled Monte-Carlo light source in red on the left and
a importance sampled Monte-Carlo light source on the right. The top row shows how
well the importance sampling does in terms of variance reduction for small light source
sample numbers. Even for only one area light sample per intersection point the edges of
the specular reflection are visible. For higher numbers of area light samples the difference
becomes less significant.

3.3 Conclusion

In this project a ray tracer consisting of more then five-thousand lines of code have
been written. Another thousand lines have been written from scratch in python, but
that version had to be abandoned out of speed concerns. The Java version of the ray
tracer covers key areas of the course, generally the implemented features work, but much
room for further improvement still remains. The tree generation process especially for

MILESTONE 3. SPECIAL EFFECTS 23

SAH-Trees could be optimized further, currently SAH beats all the other methods in
terms of rendering time, but takes longer overall for complex wavefront objects consisting
of large numbers of triangles, because the tree generation is slow. Importance sampling
works as well but currently takes only the scene geometry into account. An improved
version could use the texture information to converge even faster.

	Essentials
	Geometry
	The triangle primitive
	The plane primitive
	The sphere primitive

	Object Transformations
	Point Lights
	Shading
	Camera
	Python or Java

	Textures and acceleration
	Acceleration
	Middle-Split
	Split a sorted list
	Surface area heuristic
	Intersection testing
	Results

	Textures
	Procedural texturess

	Special Effects
	Common part
	Anti-aliasing
	Area Lights

	Special effects
	Normal Mapping
	Physical materials
	Importance Sampling

	Conclusion

