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1 Abstract

This report deals with methods to handle perturbations to the right hand side of Ax = b.
Precisely an additional noise contribution is added to b such that b = bexact + α · bnoise.
Where bnoise is a vector with entries drawn from the standard normal distribution N (0, 1)
so effectively noise with the distribution N (0, α2) is added. The process of recovering
xreg ≈ A−1bexact as precisely as possible is called regularization. Tikhonov regulariza-
tion, TSVD and conjugate gradient methods will be applied and their regularization
properties compared. The first two methods require a regularization parameter λ. It
can be obtained using for example the L-curve criterion or generalized cross-validation
(GCV). Both methods will be explored further.

2 Results

2.1 Tikhonov regularization

Tikhonov regularization can be implemented using the singular value decomposition of
A. The idea is to filter out the very small singular values, which are greatly influenced
by the noise contribution using

xreg =
n∑

i=1

fi
uT
i b

σi

vi. (1)

The filter factors fi are computed using

fi = σ2
i /(σ

2
i + λ). (2)

Where filtering takes place if σi < λ. On the other hand a singular value σ remains
unfiltered if σi > λ. The equations above can be implemented without a for loop in
matlab:

[U, S ,V] = svd (A)
sigma = diag (S ) ;
fVec = sigma .ˆ2 . / ( sigma .ˆ2 + ones (n , 1 )∗ lambda . ˆ 2 ) ;
F = diag ( fVec ) ;
x = sum(U∗F∗diag ( sigma .ˆ(−1))∗V’∗b , 2 ) ;

For this method to work it is essential to choose a good value for λ.
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Figure 1: The L-curve in relation to curve fitting problems. On the left a known curve btrue

is shown in blue. b = btrue+bnoise is shown in red. The right plot shows efforts to recover
the noise free solution. The effects of no filtering (blue, ‖Ax‖ = 21.77, ‖Ax − btrue‖ =
7.59), optimal filtering (red, ‖Ax‖ = 19.44, ‖Ax − btrue‖ = 3.33) and over-damping
(yellow, ‖Ax‖ = 18.3362, ‖Ax− btrue‖ = 5.08) are shown.

2.1.1 The L-curve

The L-curve is a plot of the residual norm ‖Ax − b‖ and the norm of the regularized
solution ‖Lx‖. It displays the trade off between the fit to regularized data and the size of
the solution and gives insight into the properties of the underlying regularization method.1

Using Tikhonov regularization as described in equation 1 and the filter of equation 2. The
plots in figure 2 have been computed. We are interested in obtaining a result as close
to the noise free data as possible. The trade off shown in the L-curve is illustrated in
another way in figure 1.2 When choosing a good filter parameter it is important to remove
noise contributions, which is done by minimizing ‖Lx‖, while at the same time making
sure that the data points are still being followed in a satisfactory way, which is done by
keeping ‖Ax − b‖ as small as possible. In practice btrue is unknown, it has been used
in the experiment shown in figure 1 only to verify that the L-curve criterion which has
been computed using the noisy b is indeed working. The optimal point can be found at
the pointy edge of the L-curve, ideally the curvature will display a maximal value here.
Following Hansen once more the curvature κ has been computed using3

κ = 2 · ρ̂′η̂′′ − ρ̂′′η̂′

((ρ̂′)2) + (η̂′)2)3/2
. (3)

with η̂ = log(‖xλ‖22) and ρ̂ = log(‖Axλ − b‖22). The derivatives have been implemented
by simply using right forward differences

ρ̂′ =
(ρ̂k+1 − ρ̂k)

(λk+1 − λk)
. (4)

1The L-curve and its use in the numerical treatment of inverse problems, P. C. Hansen, Department
of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark

2following a similar example in: The L-curve and its use in the numerical treatment of inverse problems,
P. C. Hansen

3The L-curve and its use in the numerical treatment of inverse problems, P. C. Hansen
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Figure 2: Plots of ‖Ax−b‖, ‖Lx‖ and the curvature of the L-curve κ. For the given A1,
berr1 pair.
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Figure 3: Tikhonov regularization L-curve and curvature for the matrix A2 and vector
berr2.
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Figure 4: Tikhonov regularization, L-curve and curvature for the matrix A3 and vector
berr3.

For the second derivatives the same process has simply been applied again. η̂′ and η̂′′ have
been computed in the same manner. The plot of the curvature which has been obtained
by using the formulas above is shown in figure 2 in the bottom left. In all plots in the
figure the location of the maximum of κ has been indicated with stars(*). It is important
to notice that λ increases when following the L-curve from the top left to the bottom
right.

Figure 3 shows a more dubious case. For the given matrix A2 the L-curve displays
two edges. The selection criterion now chooses the edge at the bottom as it is curvier
then the previous one. However maybe the emphasis should have been to reduce the
residual instead of the solution norm. In that case the previous edge should have been
selected. This example shows that selection by curvature is not free of flaws, it tends to
oversmooth the solution in this case. Figures 5, 6 and 7 show more examples where the
L-curve criterion performs very well. However there is an absentee. Matrix A3 is missing.
Here the L-curve’s edged is not found exactly by the curvature based selection criterion,
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Figure 5: Tikhonov regularization, L-curve and curvature for the matrix A4 and vector
berr4.
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Figure 6: Tikhonov regularization, L-curve and curvature for the matrix A5 and vector
berr5.
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Figure 7: Tikhonov regularization, L-curve and curvature for the matrix A6 and vector
berr6.
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Figure 8: Plot of the value of the GCV-function for different values of λ for the A1,berr1

and the A3,berr3 pair.

this example will be solved using GCV, which as explained in the next section.

2.2 Generalized Cross validation (GCV)

An other way to find a suitable regularization parameter is generalized cross validation.
When this method is used the function

G =
‖Axreg − b‖22

(trace(Im −AAI))2
(5)
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Figure 9: Plot of the lambdas selected by the L-curve curvature criterion and generalized
cross validation.

is minimized. With xreg defined as in equation 1. The trace of the denominator can be
simplified to:

trace(Im)− trace(AAI) assuming symmetry (6)

= n− trace(ATAI) (7)

= n− trace(VΣTUTUFΣ−1VT ) svd (8)

= n− trace(VTVΣTFΣ−1) cyclic rotation (9)

= n− trace(Σ−1ΣF) cyclic rotation (10)

= n− trace(F) F is diagonal (11)

= n− sum(F) (12)

With F being a matrix with the filter factors on the diagonal. The reasoning described
above is used to compute the GCV function efficiently. A comparison of the λ values
selected by the L-curve curvature criterion and GCV is given in figure 9. For the first
problem both methods select almost the same value. In two an three the value selected
by the L-curve curvature criterion is significantly larger then what is chosen by the GCV
criterion and what a human would have selected. In these six examples this generally
happens when the value of the maximum of the κ curve is not very large. In these cases
GCV should be preferred.

2.3 Picard condition

The Picard condition states that the Fourier coefficients |uT
i b| have to decay faster then

the singular values. If this condition is satisfied, then one has every reason to believe that
xreg approximates the true x well.Figures 10,11,12 show that regularization is necessary
as the Fourier coefficients violate the Picard condition. Additionally all solutions where
the singular values have been filtered using Tikhonov regularization adhere to the Picard
condition, which indicated that regularization was successful.
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Figure 10: Plot of Fourier coefficients and singular values for the first A1,berr1 and second
A2,berr2 value pair .
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Figure 11: Plot of Fourier coefficients and singular values for the third A3,berr3 and
fourth A4,berr4 value pair .
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Figure 12: Plot of Fourier coefficients and singular values for the fifth A5,berr5 and sixth
A6,berr6 value pair .
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2.4 DSVD

A modification of the filter function given in equation 2 to

fi =
σi

σi + λ
(13)

gives the damped svd, which introduces less filtering. However the same effect can also
be achived by reducing the regularization parameter. Filtering following equation 13 has
the drawback that often the L-curve is very noisy, which leads to curvature selection often
incorrectly selecting a noise spike instead of the proper edge of the L-curve. Therefore
dsvd has not been pursued further. A different approach is to truncate the svd after
if the singular values are smaller the regularization parameter. Working with unfiltered
matrices until they become stable will also lead to a noisy L-curve and has therefore not
been pursued further.

2.5 Conjugate gradients

When solving normalized problems (ATAx = ATb) using the conjugate gradient (CG)
algorithm solution components associated with large singular values appear first. While
running the CG-algorithm the damping decreases from only using the largest singular
values initially to using more and more in higher iterations. The listing below shows the
way CG was implemented:

i t = length (b ) ;
r = A’∗b ;
p = r ;
x = 0∗p ;
rsOld = r ’∗ r ;
for n = 1 : i t

Asp = A’ ∗ (A∗p ) ; % form A’∗A wi thout computing A’∗A.
vAlpha = rsOld /(p ’∗Asp ) ; % step l en g t h .
x = x + vAlpha∗p ; % approximate s o l u t i o n .
r = r − vAlpha∗Asp ; % re s i d u a l
rsNew = r ’∗ r ;
vBeta = ( rsNew )/( rsOld ) ; % improvement o f p rev ious s t ep .
p = r + vBeta∗p ; % search d i r e c t i o n .

rsOld = rsNew ; % squared r e s i d u a l update .

xVec ( : , n ) = x ; % s to r e the s o l u t i o n
resNormVec (n) = norm(A∗x−b ) ; % compute r e s i d u a l norm .
solNormVec (n) = norm( x ) ; % compute the s o l u t i o n norm .

end

The code snipped above shows that in each iteration the residual norm and size of the
solution are recoded. Observing the behavior of the algorithm reveals that

Figure 13 shows the results obtained from running the CG-algorithms on the A1,berr1

pair. In comparison to figure 2 CG performs equally well as Thikonov regularization.
The regularization parameter with CG is the number of iterations. As the norm values
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Figure 13: Result of conjugate gradient iterations on the A1, berr1 pair. The yellow and
purple lines show smoothed version of the orange and blue lines.
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Figure 14: Smoothed L-curve and κ of this new L-curve.

for both norms are not continuous, using the L-curve criterion for selecting a suitable
number of iterations is difficult, as it is very hard to find the edge of the L-curve. Using
filtered approximations of the norm functions as shown in figure 13 on the left leads
to the smoothed L-curve shown in figure 14. A meaningful curvature function can now
be computed. The approximated edge of the L is indicated by a star as before. L
curve plots from CG application to the remaining five data sets are shown in figure 15.
L-curve shapes only appear for the sets two, three and four. For A5,berr5 and A6,berr6

the curve is an inverted A. Which indicates that the conjugate gradient method can only
minimize residual only if ‖Lx‖ becomes large, which implies undesired tracking of the
noise contributions. For A2,berr2, A3,berr3 and A4,berr4, the CG-algorithms produces
an L-shaped curve. For the second case the reduction of the solution norm is insufficient.
In the third and fourth case results are comparable to Thikonov regularization, however
the approximations of the proper number of iterations could be more precise.
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Figure 15: L-curve plots of the original CG-results on the five remaining pairs in increasing
order, with edge approximation indicated by a star. The approximation comes from
smoothed data, which is not shown.
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3 Conclusion

In this report several different methods to regularize noisy problems have been discussed.
To balance damping and oscillating of the solution the L-curve has been discussed. Includ-
ing an automatic mechanism to pick a good regularization parameter. Tikhonov’s method
produced good results. The same method also worked with generalized cross validation.
Tsvd, Dsvd and conjugate gradient methods produce noisy L-curves. Often these curves
are equally good from a regularization point of view. But it is hard to choose a good
regularization parameter automatically using curvature data computed from derivatives.
Sometimes filtering of the noisy data can lead to acceptable approximations. The use of
GCV in connection with these methods should be investigated further. It might prove to
be more noise resistant. Due to time constraints this is outside of the scope of this report.
Finally the Picard condition has been checked for filtered and unfiltered problems when
using Thikonov regularization. Evaluation of the results provides reason to believe that
all six problems have been correctly regularized.
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