
Introduction to Reinforcement learning

Moritz Wolter
March 18, 2025

The High-Performance Computing and Analytics Lab, Bonn University



Overview

Motivation

The Q-learning algorithm

Neural Q-Function approximations

Training and implementation

1



Motivation



Motivation

Thus far we have considered supervised learning problems and
that’s great, but

• how do we deal with situations where labels are unavailable?
• Animals and humans do not need to be told what to do all

the time.
• Reinforcement learning (RL) aims to use

environment-feedback.

2



Reinforcement learning examples

This lecture and the exercises deal with games. It is important to
note, that RL powers robots, too [KK99; Wu+23].

Play video1

Currently companies are working on digital assistants, which are
trained on humand feedback via RL [Bai+22].

1https://www.youtube.com/watch?v=xAXvfVTgqr0

3

https://www.youtube.com/watch?v=xAXvfVTgqr0


The Frozen Lake

Figure: The frozen-lake setting is a standard educational reinforcement
learning problem [Fou24].

4



Frozen Lake Rewards and Actions

The elf wants to reach the present. The only feedback we get is
when we reach the present. More formally the reward is structured
as [Fou24],

• Reach goal: +1
• Reach hole: 0
• Reach frozen: 0

To reach the present the agent is allowed to sample from the
action space, which is

• 0: Move left
• 1: Move down
• 2: Move right
• 3: Move up

in this case [Fou24]. 5



The RL problem

How do we deal with the fact, that we might have to perform
many many actions until we potentially see a reward?

6



The Q-learning algorithm



The Q-Table idea

At every state (tile of the lake), we can think of the expected
reward of taking an action. For example, if we stand next two a
hole moving into it yields zero reward. The result is a table or
function Q(s, a) ∈ RNs ,Na which returns a reward estimate for all
states and actions. Here Ns measures the total number of states
and Na the number of possible actions.

7



The Q-learning algorithm [Mni+13]

Our agent lives in an environment E , where it is allowed to perform
actions at from the set of allowed actions A = {1, . . . , K}. The
agent has access to an input xt , which contains environment
information. We record the sequence of actions and states,
st = x1, a1, x2, . . . , at−1, xt . We denote the reward at time t as rt .
We expect to see a reward only at the end of a sequence t = T .

8



The Q-learning algorithm

Q(st , at)update = Q(st , at) + α(rt + γ max
am

(Q(st+1, am)) − Q(st , at))
(1)

Here Q ∈ RNs ,Na denotes the Q-Table with Ns the number of
states and Na the number of possible actions. Reward at time t rt

learning rate α as well as the discount factor γ.

9



Q-learning in the frozen lake case


[0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.]
[0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.]
[0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.]
[0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0.9, 0.] [0., 0., 0., 0.]

 (2)

10



Q-learning in the frozen lake case

This process continues until a path is established. After 1000
episodes the table looks as follows

[0., 0.59049, 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.]
[0., 0.6561, 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.]
[0., 0., 0.729, 0.] [0., 0.81, 0., 0.] [0., 0., 0., 0.] [0., 0., 0., 0.]

[0., 0., 0., 0.] [0., 0., 0.9, 0.] [0., 0., 1., 0.] [0., 0., 0., 0.]

 .

(3)

Action order: [Move left, Move down, Move right, Move up]

11



Deviating from maxa Q(s, a)

The previous approach yielded only a single path. To explore more
states we can choose to deviate from maxa Q(s, a) with a
probability ϵ.

12



Deviating from maxa Q(s, a)

ϵ = 0.2, and 5k steps lead to[0.53, 0.59, 0.59, 0.] [0.53, 0., 0.6, 0.] [0.59, 0.73, 0.59, 0.] [0.66, 0., 0., 0.]
[0.59, 0.66, 0., 0.] [0., 0., 0., 0.] [0., 0.81, 0., 0.] [0., 0., 0., 0.]
[0.66, 0., 0.73, 0.] [0.66, 0.81, 0.81, 0.] [0.729, 0.9, 0., 0.] [0., 0., 0., 0.]

[0., 0., 0., 0.] [0., 0.81, 0.9, 0.] [0.81, 0.9, 1., 0.] [0., 0., 0., 0.]

 .

(4)

13



Neural Q-Function approximations



What if the state space is too large to explore?

• The number of possible states in games, but also in the real
world grows very quickly.

• What if we fail to set up a complete table?
• How do we approximate missing table entries?

14



Neural approximation of the Q-Table [Mni+13]

Key Idea: Use a neural network Q(s, a; θ) ≈ Q(s, a).

L(θ) = 1
Na

Na∑
i=1

(yi − Qn(s, a; θ)i)2 (5)

with Qn(s, a; θ) ≈ Q(s, a) the neural Q-Table approximator. And y
the desired output at the current optimization step. Construct
y ∈ R3,3 by inserting

yr =

r , if the game ended
r + γ maxa Q(st+1,a;θ) else

(6)

into y at the position of the move taken.

15



Training and implementation



Training TicTacToe Game-Agents

x x
o

o

Table: TicTacToe board of an ongoing game. Player 1 (x) moves next.
How should the distribution of future reward look like?

16



Training neural Q-Table approximators

Fully connected ReLU-layers,

h = f (Wx + b) (7)

are a possible network architecture building block. Three layers per
example are enough for an agent to play TicTacToe reasonably
well.

17



Convergence and average reward

0 0.2 0.4 0.6 0.8 1
·104

0.6

0.7

0.8

0.9

1

games

av
er

ag
e

re
wa

rd

Figure: Average reward over 100 games for a neural TicTacToe Q-agent
playing against a random opponent.

18



Conclusion

We have seen the core ideas required to build your own table and
neural-network-powered agents.

Don’t forget to play against your agent after finishing today’s
exercise.

19



Literature i

References

[Bai+22] Yuntao Bai, Andy Jones, Kamal Ndousse,
Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli,
Tom Henighan, et al. “Training a helpful and
harmless assistant with reinforcement learning
from human feedback.” In: arXiv preprint
arXiv:2204.05862 (2022).

20



Literature ii

[Fou24] Farama Foundation. Frozen Lake.
https://gymnasium.farama.org/environments/toy_

text/frozen_lake/. [Online; accessed 08-March-2024].
2024.

[KK99] Hajime Kimura and Shigenobu Kobayashi.
“Reinforcement learning using stochastic gradient
algorithm and its application to robots.” In: IEEJ
Transactions on Electronics, Information and Systems
119.8-9 (1999), pp. 931–934.

21

https://gymnasium.farama.org/environments/toy_text/frozen_lake/
https://gymnasium.farama.org/environments/toy_text/frozen_lake/


Literature iii

[Mni+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. “Playing atari with deep
reinforcement learning.” In: arXiv preprint
arXiv:1312.5602 (2013).

[Wu+23] Philipp Wu, Alejandro Escontrela, Danijar Hafner,
Pieter Abbeel, and Ken Goldberg. “Daydreamer:
World models for physical robot learning.” In:
Conference on Robot Learning. PMLR. 2023,
pp. 2226–2240.

22


	Motivation
	The Q-learning algorithm
	Neural Q-Function approximations
	Training and implementation
	References

