
FACULTY OF ENGINEERING

Support Vector Machines
Report

Moritz Wolter

Contents

1 Classification 2
1.1 Geometric construction of a classifier . 2
1.2 Vapnik Support Vector machines . 2
1.3 Least Squares Support Vector machines . 7

1.3.1 RBF kernel parameter selection for the iris data set 10
1.3.2 Polynomial kernel parameter selection for the iris data set 10
1.3.3 The impact of different validation methods 11
1.3.4 Automatic tuning . 11
1.3.5 The roc-curve . 14
1.3.6 Full complexity iris data set classification 14

1.4 The Ripley Data-Set . 15
1.5 Breast Cancer Data-set . 15
1.6 Diabetes Database . 17

2 Function Estimation and Time-series Prediction 19
2.1 Regression Support Vector Machines. 19

2.1.1 Sum of cosines . 21
2.1.2 Hyper-parameter tuning . 21
2.1.3 The Bayesian Framework . 24
2.1.4 Robust Regression . 27

2.2 Santa Fe laser Time series prediction . 27
2.3 Lorenz equation estimation . 31

2.3.1 A Lorenz SVM commitee . 34

3 Unsupervised Learning and sparsity 35
3.1 Kernel principle component analysis . 35
3.2 Handwritten digit denoising . 37
3.3 Spectral clustering . 39
3.4 Fixed-size LS-SVM . 41

3.4.1 Sparsity and the l0-norm . 44
3.5 Kernel and linear PCA-de-noising on high noise data 45
3.6 Shuttle dataset-analysis . 46
3.7 California dataset-analysis . 46

1

Session 1

Classification

1.1 Geometric construction of a classifier

As a first experiment a classifier will be constructed geometrically. This is done by com-
puting the average sample for each of the two training Gaussian distributed data sets
under consideration. Next the midpoint of the two average points is found. The classi-
fication boundary is drawn with at a π/2 angle to the line connecting the two average
points. The result is shown in figure 1.1 on the left. A couple of points are misclassi-
fied by this approach, which given the statistical nature of the problem must always be
allowed. In this case this method produces a decent classifier, this must not be true for
other distributions though. If for example many additional samples distributed as shown
in figure 1.1 on the right are added the method breaks down. This happened because the
new samples moved the average and with it the decision boundary. In this new situation
a large portion of the blue set is misclassified. Points far from the decision boundary
should not influence the classifier like this. This does not happen to this extend if an
optimal margin is sought which maximizes the distance of the classifier to each data set
if separable or the best possible separation in terms of classification if the data set is not.
Figure 1.2 illustrates this.

1.2 Vapnik Support Vector machines

At the hart of vapnik’s theory is the optimal hyperplane algorithm. In the linear the
hyperplane condition is given as1

yk[w
Txk + b] ≥ 1, k = 1, . . . , N (1.1)

With xk being the input data points and yk the desired output. Training the machine
means finding the high dimensional hyperplane normal vector w and the bias scalar b.
Normal means here that the dot product with any vector lying in the plane must be zero.
Technically a plane is defined by wT (x− p) = 0 but its only interesting here to evaluate
the classifier so b = pTw can be used instead and the displacement within the feature

1Support-Vector Networks CORINNA CORTES VLADIMIR VAPNIK,Machine Leaming, 20, (1995)
page 291 or Least Squares Support Vector Machines, Suykens et al., page 31.

2

SESSION 1. CLASSIFICATION 3

−4 −2 0 2

−2

−1

0

1

2

3

−4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

Figure 1.1: Geometrical construction of a linear classification line using average values.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−
30

−
20

−
10

−
10

0

0

0

10

10

20

30

test set

−5 0 5 10 15 20

−5

0

5

10

15

20

−
30

−
20

−
10

0

0

10

10

20

20

20

30

30

30

40

40

40

50

50

60
70

80

test set

Figure 1.2: Linear support vector machine classification.

SESSION 1. CLASSIFICATION 4

Figure 1.3: Support vector machine classification of an almost linearly separable problem
using a linear and an radial basis function kernel

space remains unknown. The next step is to formulate the optimization problem

min
w,b

1

2
wTw such that yk[w

Txk + b] ≥ 1. (1.2)

Which is the same as asking to maximize the classification margin. This can been seen
from rescaling the discriminant function to ‖wTx+ b‖ = 1. For separable problems using
the fact that ‖wTx + b‖ = 0, on the boundary can be used to express the classification
margin to be 1

‖w‖ . This shows that the optimization problem formulation maximizes the

classification margin by minimizing wTw.2 3 Formulating the Lagrange dual, and taking
the gradient of L(w, b;α) with respect to (w, b) leads to a problem in α. The Lagrange
multipliers are called α, if a point xk has an associated αk > 0 it is considered a support
vector. From an optimization point of view these are points with active set index Lagrange
multipliers. A problem reformulation using a mapping to a high dimensional feature space
ϕ(x) : Rn → Rm as

yk[w
Tϕ(xk) + b] ≥ 1 (1.3)

allows for different kernel options. The classifier is given by

y(x) = sign(
N∑
k=1

αkykK(x,xk) + b). (1.4)

The following three kernels will be considered here4

K(x,xk) = xT
k x (linear SVM), (1.5)

K(x,xk) = exp(−‖x− xk‖22/σ2) (RBF Kernel). (1.6)

If the problem is not separable, it means that classification cannot be done without
error. In the underlying optimization problem slack variables have to be included in the
formulation:

yk[w
Tϕ(xk) + b] ≥ 1− ξk (1.7)

2Least Squares Support Vector Machines, Suykens et al., page 30
3Support Vector Machines and Kernels for Computational Biology, Asa Ben-HurAsa et al, page 6
4Least Squares Support Vector Machines, Suykens et al., page 43.

SESSION 1. CLASSIFICATION 5

Figure 1.4: The effect of a large mis-classification penalty constant c (left), a good choice
for c (middle) and a too small penalty value (right).

Which leads to the optimization problem:

min
w,b,ξ

Jp(w, ξ) =
1

2
wTw + c

N∑
k=1

ξk (1.8)

such that yk[w
Tϕ(xk) + b] ≥ 1− ξk, k = 1, . . . , N (1.9)

ξk ≥ 0, k = 1, . . . , N (1.10)

Where c is the positive real mis-classification penalty constant. High values of c make
erroneous classification more costly in terms of the merit function. Low values make those
cheaper. Using the svmjs5 package the result of using different values of c is illustrated
in figure 1.4. Choosing the right value for c is a balancing act. It is important to choose c
not too small. As very small values will result in underfitting the problem. The resulting
classifier will ignore important features of the problem, as illustrated on the right in
figure 1.4. On the other hand c must also not be too large. If the penalty on incorrect
classification is too large the support vector machine will start to memorize noisy details,
as illustrated in figure 1.4 on the left. A good choice like the one shown in the middle
captures the key points while not falling prey to the noise, while using just as many
support vectors as necessary. The effect of changing the kernel density σ is explored in
figure 1.5. In this case the classification error increases significantly for very small or
very large σ values. Like choosing a good c value, when picking σ under and over-fitting
considerations are important. Choosing the kernel too small as shown in figure 1.5 on
the left will result in over-fitting. Even tough all points are classified correctly the model
misses the general overall geometry of the input data points completely. If σ is too large
under-fitting is observed in this case. Results are better in comparison to the very small
σ-value but one would expect to see results of similar quality from a simple linear kernel.
A good choice such as the one in figure 1.5 in the middle captures the big picture while
not using excessive amounts of support vectors.

Figure 1.6 illustrates the effect new data points have on the decision boundary. In
the right plot two new red points have been added inside of the formerly entirely green
region. The decision boundary changes if no additional mis-classification follows from

5http://cs.stanford.edu/people/karpathy/svmjs/demo/

http://cs.stanford.edu/people/karpathy/svmjs/demo/

SESSION 1. CLASSIFICATION 6

Figure 1.5: Using a too small (left), a nicely chosen (middle) and too large (right) radial
basis function parameter σ.

Figure 1.6: The effect of two additional red points on the boundary

SESSION 1. CLASSIFICATION 7

this change. For the new red point close to the green boundary this cannot be done
without mis-classifying the green points at the boundary, which therefore has to remain
unchanged. At this point it is also important to note that 6

w =
N∑
k=1

αkykxx (linear), (1.11)

w =
N∑
k=1

αkykϕ(xk) (non-linear). (1.12)

Thus not all points contribute equally to the orientation of the decision boundary. In
fact only support vectors with αk � 0 contribute, for all other points the decision bound
hardly changes or remains unchanged, if αk = 0, if the are removed.

1.3 Least Squares Support Vector machines

In contrast to classical support vector machines, their least squares version is defined as:7

min
w,b,e

Jp(w, e) =
1

2
wTw + γ

1

2

N∑
k=1

e2k (1.13)

such that yk[w
Tϕ(xk) + b] = 1− ek, k = 1, . . . , N (1.14)

In comparison to the Vapnik formulation the error variable is squared and the constraint
is turned into an equality constraint. After training the dual space classifier

y(x) = sign[
N∑
k=1

αkykK(x, xk) + b] (1.15)

is obtained. Least squares support vector machines (LSSVM) are an attempt to reduce
the computational load for very large data sets.
In a first experiment the iris data set8 is used to test the LSSVM algorithm and learn more
about the hyper-parameter space it works well in. The challenge here is to differentiate
three types of iris plants Iris Setosa, Iris Versicolour and Iris Virginica, based on the
leaf dimensions: sepal length [cm], sepal width [cm], petal length [cm], petal width [cm].
Figure 1.7 shows what petal and sepal flower leafs are9 as well as the data points included
in the original iris data set. For a first LSSVM trial run the simplified version shown in
figure 1.8 is used. Figure 1.9 shows the effect of three kernels on the classification results.
As the merged Setosa-Virginica data points surround the Versicolor measurements there
is no way these could be seperated by a simple line. A linear-svm is therefore bound to
fail. It comes as no surprise that the linear-kernel did not deliver meaningful results, as
shown in figure 1.9. The radial basis function (rbf) and the polynomial kernel are able to
cope with the complexity of the problem. The next section will explore which parameter
values should be chosen for both kernel types.

6Least Squares Support Vector Machines, Suykens et al., page 32 and 41.
7Least Squares Support Vector Machines, Suykens et al., page 72.
8http://archive.ics.uci.edu/ml/datasets/Iris
9https://en.wikipedia.org/wiki/Sepal

http://archive.ics.uci.edu/ml/datasets/Iris
https://en.wikipedia.org/wiki/Sepal

SESSION 1. CLASSIFICATION 8

2 4 6
0

1

2

length [cm]

w
id
th

[c
m
]

petal data

4 5 6 7 8
2

3

4

length [cm]

w
id
th

[c
m
]

sepal data

Figure 1.7: Illustration of the difference between petal and sepal flower leafs. As well as an
illustration of the data distribution with blue for Iris-setosa, red indicating Iris-versicolor
and yellow Iris-virginica.

2 4 6
0

1

2

length [cm]

w
id
th

[c
m
]

petal data

Figure 1.8: Simplified iris data set, only petal leafs and only two species Iris-setosa-
virginica and Versicolor are considered.

SESSION 1. CLASSIFICATION 9

2 4 6

1

2

X1

X
2

LS-SVMlin
γ=1

2 4 6

1

2

X1

X
2

LS-SVMRBF
γ=1,σ2=0.1

2 4 6

1

2

X1

X
2

LS-SVMpol
γ=1,σ2=2

Figure 1.9: Classification of the simplified iris data set using LSSVMs with different
kernels using two classes in each case.

SESSION 1. CLASSIFICATION 10

−2 −1 0 1 2
0

20

40

log(σ2)

%
m
is
s-
cl
as
si
fi
ca
ti
on

−10 −5 0 5 10
0

20

40

log(γ)

%
m
is
s-
cl
as
si
fi
ca
ti
on

Figure 1.10: Miss-classification of test samples versus σ and γ. The test set performance
is shown in blue the training set in red.

0 5 10 15 20
0

20

40

60

degree kernel polynomial

#
m
is
s-
cl
as
si
fi
ca
ti
on

−10 −5 0 5 10
0

20

40

log(γ)

#
m
is
s-
cl
as
si
fi
ca
ti
on

Figure 1.11: Miss-classification of test samples versus polynomial degree and γ. The test
set performance is shown in blue the training set in red.

1.3.1 RBF kernel parameter selection for the iris data set

When using a radial basis function kernel the training process depends on the two param-
eters σ and γ. It was observed earlier that too small values of σ lead to over-fitting and too
large ones will lead to an oversimplified classifier. This picture is repeated in figure 1.10,
on the left. The second parameter γ is the regularization parameter. If a small value is
chosen minimizing of the complexity of the model is emphasized. For a large γ on the
other hand, good fitting of the training data points is stressed. This leads to a situation
where the too large γ values cause overfitting and to small ones oversimplification as can
be seen in figure 1.10.

1.3.2 Polynomial kernel parameter selection for the iris data set

Polynomial kernels follow the similar pattern. Figure 1.11 reveals that when one chooses
the degree of the kernel polynomial too large the risk of over-fitting is high. A degree
chosen too small will not capture the problem to its full extent. Gamma behaves with
polynomial kernels just like it did with rbf-kernels.

SESSION 1. CLASSIFICATION 11

1.3.3 The impact of different validation methods

In the previous section the importance of avoiding under- or over-fitting became clear.
In this section three different validation methods will be compared. The first procedure
randomly splits the one-hundred data points of the simplified iris data set into a twenty
point validation and a hundred point training data set. Using the training data a svm is
trained and then tested on the validation set. The measured mis-classification using this
approach for γ ∈ [10−10, 1010] and σ ∈ [10−2, 102] is shown in figure 1.12.
Cross-validation is a method which attempts to use a data set more efficiently. During
k-fold-cross-validation the data set is split into k parts. While the method runs each
part is set aside for validation once. A classifier is then trained using the remaining data
points. The obtained model can then be tested on the validation part. During the next
iteration another part will be ignored during training and so on. Cross validation has the
added benefit, that each set serves as a validation set once, which hopefully gives a more
complete picture of classification performance. Finally the leave one out method uses all
data points except for one to train the classifier. The remaining data point can then be
used to evaluate the classifier found. In a next iteration another point is ignored the model
is retrained and so on. The leave one out methods is the most conservative in terms of
training set size, but also requires the most computational resources as many iterations are
required to get a meaningful idea about the classification performance. Figures 1.12, 1.13
and 1.14 show the validation results of the three methods using the same parameter ranges.
For poor choices of σ and γ, correct classification sinks to about fifty percent, which is as
good as classification at random. Generally speaking the 80% split method is the most
data hungry, and it gives an edgy representation of svm performance. Cross validation is
more efficient on the data and results are smoother but still follow a similar pattern. The
leave one out methods produces an incorrect blue area in the top right for very small γ
and σ values, which does not appear when using other methods. Generally speaking the
leave one out methods is suitable for small data-sets due to its computational inefficiency.

1.3.4 Automatic tuning

Using the ls-svm toolbox’10 tunesvm function automatic hyper-parameter selection is
explored. Two algorithm pairs are available. The first pair is coupled simulated an-
nealing or randomized directional search. The optimization function can be a simplex-
type method or brute force gridsearch. Finally classification cost can be evaluated using
k-cross-validation or leave-one-out. When choosing a combination a speed or accuracy
trade-off has to be made. The fastest but most unstable combination tried during ex-
periments for this report was the randomized directional search coupled with simplex
optimization and cross validation. A histogram showing the γ and σ values found during
fifty training processes is shown in figure 1.15. Instead of the randomized directional
search coupled simulated annealing can be used. Which is not parallelized but the results
if finds are more consistent, as can be seen in figure 1.16. The most stable algorithm com-
bination in terms of predictability was a simulated annealing, grid search, leave-one-out
validation combination. A histogram with tuning results is shown in figure 1.17. Only
one of fifty iterations produced a large outlier.

10http://www.esat.kuleuven.be/sista/lssvmlab/

http://www.esat.kuleuven.be/sista/lssvmlab/

SESSION 1. CLASSIFICATION 12

−2 −1 0 1 2

−10

−5

0

5

10

log(γ)

log(σ2)

Figure 1.12: Miss-classification of validation data using a 80% training and 20% validation
data ratio.

−2 −1 0 1 2

−10

−5

0

5

10

log(γ)

log(σ2)

Figure 1.13: Miss-classification using ten fold cross-validation.

−2 −1 0 1 2

−10

−5

0

5

10

log(γ)

log(σ2)

Figure 1.14: Miss-classification using leave one out validation.

SESSION 1. CLASSIFICATION 13

0 10 20
0

5

10

γ

0 2 4 6 8 10
0

5

10

15

20
σ2

Figure 1.15: Histogram of automatically tunned γ and σ values using randomized direc-
tional search, cross-validation together with simplex-optimization.

0 2 4 6

·104
0

20

40

γ

0 20 40
0

20

40

σ2

Figure 1.16: Histogram of automatically tunned γ and σ values using coupled simulated
annealing, cross-validation together with simplex-optimization.

0 0.2 0.4 0.6 0.8 1

·105
0

20

40

γ

0 1,000 2,000 3,000
0

20

40

σ2

Figure 1.17: Histogram of automatically tunned γ and σ values using coupled simulated
annealing, leace-one-out-validation together with a grid search algorithm.

SESSION 1. CLASSIFICATION 14

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

S
en
si
ti
v
it
y

Receiver Operating Characteristic curve, area=1, std = 0

Figure 1.18: ROC curve of an ideal classifier.

1.3.5 The roc-curve

The receiver operating characteristic (roc)-curve is a way to asses the performance of a
binary classifier as its discrimination threshold is varied. Defining11

Sensitivity =
TP

TP + FN
(1.16)

Specifity =
TN

FP + TN
(1.17)

False pos. rate = 1− Specifity =
FP

FP + TN
(1.18)

With TP = “true positive”, FP = “false positive”and TN = “true negative”. The sen-
sitivity is thus the ratio of correctly classified positives over the sum of true positives
and false negatives, which is the total number of positive cases that should have been
identified as such. Ideally one would aim for a sensitivity of one. Similarly the specificity
is the number of true negatives over the total of cases that should have been classified
as negative. Going trough possible decision threshold values the roc-curve is drawn. The
area under the curve describes the efficency of the classifier. If it is one, a perfect classifier
has been found, such as the one in figure 1.18. If the area is one half, the classifier has no
added value over classification at random.

1.3.6 Full complexity iris data set classification

There is no reason not to subject least squares support vector machines to the full four
dimensional classification problem as seen in figure 1.7. An experiment is done where 30
of the 150 iris plant data points are set aside for validation. The remaining values serve
as training data. Automatically trained linear and rbf-kernel svm did not mis-classify a
single iris flower and got optimal roc-curves such as the one shown in figure 1.18.

11Least Squares Support Vector Machines, Suykens et al., page 19.

SESSION 1. CLASSIFICATION 15

−1 0 1

0

0.5

1

−1 0 1

0

0.5

1

Figure 1.19: Visualization of the binary classification Ripley training and validation data
set. The filled dots indicate the position of the average point for each set.

1.4 The Ripley Data-Set

The ripley data set12 is a well know set used to test machine learning algorithms. The
training and validation data are shown in figure 1.19. A linear and radial basis function
kernel will be used to classify the validation data set. Figure 1.20 shows the linear classifier
on the training data set and the validation data based roc-curve. In this experiment it
was observed that the linear classifier got 16.8% or 42 of the 250 validation data points
wrong. Due to the non-liner nature of the problem the radial basis function kernel was
able to outperform its linear counterpart, only 2.4% or 6 validation data points where
incorrect. This performance difference is somewhat reflected in the roc curves shown on
the right of figures 1.20 and 1.21, the curve associated with the rbf-svm covers more area
and has a lower standard-deviation.

1.5 Breast Cancer Data-set

The uci breast cancer set13 contains 596 multidimensional-data points with tissue sample
information such as smoothness, compactness, concavity, etc. The data is annotated,
with labels indicating healthy or cancerous samples. 400 training and 169 validation
measurements are included. Data points have more then 3 dimensions it is this not
possible to visualize them using conventional methods. Therefore different classifiers will
be trained and evaluated using their roc-curves. The roc-curves of automatically tuned
linear and rbf-classifiers are shown in figure 1.22. Both classifiers perform equally well,
only around two to five percent of samples are mis-classified using automatically tuned
machines with either of the two kernels.

12Pattern recognition and Neural Networks B.D. Riplely, Cambridge University press, http://www.
stats.ox.ac.uk/pub/PRNN/

13http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

http://www.stats.ox.ac.uk/pub/PRNN/
http://www.stats.ox.ac.uk/pub/PRNN/
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

SESSION 1. CLASSIFICATION 16

−1 −0.5 0 0.5 1

0

0.5

1

X1

X
2

LS-SVMlin
γ=1.3361

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

S
en
si
ti
v
it
y

ROC-curve, area=0.93267, std = 0.015248

Figure 1.20: Linear least squares support vector machines visualization and validation
based roc curve.

−1 −0.5 0 0.5 1

0

0.5

1

X1

X
2

LS-SVMRBF
γ=1.3361,σ2=0.68658

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

S
en
si
ti
v
it
y

ROC-curve, area=0.94752, std = 0.012607

Figure 1.21: Radial basis function least squares support vector machines visualization
and validation based roc curve.

SESSION 1. CLASSIFICATION 17

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

S
en
si
ti
v
it
y

roc curve, area=0.99593, std = 0.0025976

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

S
en
si
ti
v
it
y

roc curve, area=0.99563, std = 0.0032226

Figure 1.22: Linear and radial basis function lssvm classifier roc-curves for the breast-
cancer data set.

1.6 Diabetes Database

In this example data from a study of diabetes cases among female Pima indians 14 is
used. The data set consists of 300 training data points and 168 validation samples. Each
point consists of information such as the number of past pregnancies, body mass index,
plasma glucose concentration and so on. Again for multi-dimensional data sets such as
this one visualization is not trivial. Thus classifiers will once more be compared using their
roc-curves. A linear and radial basis function svm has been trained. Their roc-plots are
shown in figure 1.23. Again the two classifiers perform similarly with the linear classifier
being correct in 74% of cases and the radial basis function delivering correct classification
in 77.8% of all validation cases.

14http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/

pima-indians-diabetes.names

http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.names
http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.names

SESSION 1. CLASSIFICATION 18

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

S
en
si
ti
v
it
y

roc-curve, area=0.84312, std = 0.031874

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

S
en
si
ti
v
it
y

roc-curve, area=0.85195, std = 0.029851

Figure 1.23: Linear and radial basis function lssvm classifier roc-curves for the diabetes
data set.

Session 2

Function Estimation and Time-series
Prediction

2.1 Regression Support Vector Machines.

The support vector methodology is not limited to classification problems. 1 In the primal
space a model funcion of the form: 2

f(x) = wTϕ(x) + b (2.1)

With annotated training samples {xk, yk} and a nonlinear mapping ϕ(·) : Rn → Rnh ,
which is only implicitly defined. This definition leads to the primal optimization problem:

min
w,b,ξ,ξ∗

Jp =
1

2
wTw + c

N∑
k=1

(ξk + ξ∗k) (2.2)

such that yk −wTϕ(xk)− b ≤ ε+ ξk, k = 1, . . . , N (2.3)

wTϕ(xk)− b− yk ≤ ε+ ξ∗k, k = 1, . . . , N (2.4)

ξ, ξk ≥ 0, k = 1, . . . , N (2.5)

After taking and solving the dual the representation

f(x) =
N∑
k=1

(αk − α∗
k)K(x,xk) + b (2.6)

of the model is obtained. The σ2, c and ε are user parameters, which do not follow from
a QP, but should be determined by cross-validation for example. A closer look at ε is
taken in figure 2.1, which has been generated using the uiregress function. 3 Here c and
σ2 = 0.1 are kept constant, while ε is varied. In the leftmost plot ε = 0.1 is used, then
increased to ε = 0.25 and finally raised to ε = 0.5. Being similar to the ε-tube for Lipschitz
continuous functions the ε-parameter sets up a tube around the original function. In this
case the tube is not used for measuring continuity but to set up a tolerance region around

1Support Vector Machines: Methods and Applications, Suykens et al., page 53
2Support Vector Machines: Methods and Applications, Suykens et al., page 54
3SVM toolbox www.isis.ecs.soton.ac.uk/isystems/kernel/svm.zip

19

www.isis.ecs.soton.ac.uk/isystems/kernel/svm.zip

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 20

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

−1 −0.5 0 0.5 1
−1

0

1

Figure 2.1: RBF kernel based funtion esimation with σ2 = 0.1, ε = 0.1, ε = 0.25 and
ε = 0.5.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

−1 −0.5 0 0.5 1
0

0.5

1

1.5

Figure 2.2: On this data set the linear kernel is able to outperform a radial basis function
kernel, which is more susceptible to the noisy outliers.

a function which leads to the approximation following the data less closely. A look at the
optimization problem constraint function formulation confirms this. Only for small ε does
the problem become infeasible and the slack variables necessary. Errors within the ε-tube
don’t count into the error term of the cost function. Figure 2.1 also suggests that larger
values for ε reduce the number of support vectors. Figure 2.2 shows an example of an
approximately line-like function with some outliers. In this case a simple linear kernel is
a good choice, as it is unable to track the added complexity of the noise. An rbf-function
kernel is able to integrate the noise into the model, but in this example one would like
to avoid this. However it is possible to fundamentally improve the rbf kernel results if
the parameters σ, c4, and ε are changed more towards regularization. Most notably the
parameter c, which determines the tolerance for deviation from the desired ε-accuracy can
be used to improve the performance of the rbf-kernel. If c is set to a comparatively large
value with ε kept small, results improve. A good choice will use a moderate value for ε
to reduce the amount of support vectors and thereby increase the sparsity of the solution
vector5, while using c to make sure the solution is not to prone to deviations introduced
by outliers.

4c is the regularization parameter. It is called γ in svm toolbox functions.
5Support Vector Machines: Methods and Applications, Suykens et al., page 33

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 21

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

2

Figure 2.3: Estimation results using all combinations of σ2 ∈ {0.0018738, 0.0001} and
γ ∈ {1.0, 10.2353, 10000} as inputs to function estimation svms.

2.1.1 Sum of cosines

As an initial noise free example function:

f(x) = cos(x) + cos(2x) (2.7)

will be considered. Finding a good set of hyper-parameters by hand can be tricky as
figure 2.3 illustrates. The approximation tends to oscillate if σ2 is chosen very small.
This can be explained using equation 2.6, which states that the estimator is created by
superposing weighted and shifted kernel functions. In this case Gaussians are added up.
If their width (σ2) becomes small their sum must oscillate, because the Gaussians will
not overlap sufficiently. The height of the gaussians is controlled by the regularization
parameter γ, as it acts like a box constraint when the dual is formed. In the primal
gamma is the weighting term of the deviations from the original function values. Thus,
when γ is chosen too small the kernel functions can not be tall enough to approximate
the function. To make a good choice, a hundred by hundred grid in σ2 ∈ [10−5, 100] and
γ ∈ [100, 1010] has been searched using the two norm of the error vector (yest −y) as cost
function. The error function on the described input space as well as the estimator with
the lowest error is shown in figure 2.4. The grid search led to the optimal parameter pair
σ2 = 0.0019 and γ = 10.2353. Estimation results are shown in the middle of figure 2.4
training set performance is plotted on the left. Next a noisy version of f(x) is considered:

f(x)n = cos(x) + cos(2x) + xn (2.8)

With the values for xn drawn from the normal distribution N (0, 0.12). The changed
situation is shown in figure 2.5. When noise is added on average the optimal values for
σ2 must be chosen larger to avoid over-fitting.

2.1.2 Hyper-parameter tuning

Just like it was possible to automatically search the hyper-parameter space for good tuning
parameters in the classification setting, it is possible in the function estimation case. One
option is certainly to use a brute fore grid based approach. Figure 2.7 shows the cost
function within the space σ2 ∈ {0.0018738, 0.0001} and γ ∈ {1.0, 10.2353, 10000} on a
hundred by hundred grid. The cost function log10(‖yest − y‖2) is shown logarithmically
on the z-axis. The plot reveals that this problem might not be convex. Several possible

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 22

−10 −5 0 5 10

−1

0

1

2

x

y

LS-SVMRBF
γ=10.2353,σ2=0.0018738

−10 −5 0 5 10

−1

0

1

2

x

y

0 5 10

−4

−2

0

σ2

γ

Figure 2.4: Plot of the optimal estimation of the noise-free function f(x). The right plot
shows the approximation on training data, the middle one performance on validation data.
The blue dots are function values the red crosses show approximation values. Finally the
plot on the right shows the explored hyperparameter-space and corresponding two norms
of the error vector (yest − y).

−10 −5 0 5 10

−1

0

1

2

x

y

LS-SVMRBF
γ=8.1113,σ2=0.021544

−10 −5 0 5 10

−1

0

1

2

x

y

0 5 10

−4

−2

0

σ2

γ

Figure 2.5: Plot of the optimal estimation of the noisy function fn(x). The right plot
shows the approximation on training data, the middle one performance on validation
data. Finally the plot on the right shows the hyper-parameter-space and corresponding
two norms of the error vector (yest − y).

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 23

−10 −5 0 5 10

−1

0

1

2

X

Y

LS-SVMRBF
γ=4964492.1679,σ2=0.023489

−10 −5 0 5 10

−1

0

1

2

X

Y

LS-SVMRBF
γ=31.7874,σ2=0.02027

Figure 2.6: Exemplary tuning results on noise free and noisy data.

−6

−4

−2
0 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

σ2

γ

lo
g
1
0
(‖
y
es
t
−
y
‖ 2
)

Figure 2.7: A 3d logarithmically scaled plot of the cost in the hyper-parameter space of
the noisy function estimation problem.

local minima exist where a pure gradient based optimization approach could get stuck.
Therefore a global optimization method is needed as a remedy, locally standard methods
like the simplex method can be employed. In a first experiment the global optimization
algorithm Coupled Simulated Annealing and local simplex-optimization are used. If noise
is present the optimization algorithm must choose the regularization constant smaller to
stress model complexity reduction. If no noise is present good fit of the model can be
stressed, as can be seen in figure 2.6.

Table 2.1 shows the average time of 10 different tuning function runs. It can be said
that simplex optimization is faster then a grid based approach and randomized direc-
tional search is faster then simulated annealing (if the startup time of the parallel pool
is neglected). In terms of accuracy of the found solution no significant differences could
be found on average, see table 2.2. Which means that all method combinations find good
parameters in this case in general.

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 24

csa ds
simplex 0.6765 0.5944
grid 0.9788 0.9062

Table 2.1: Average time of a single tuning function execution. The average was computed
from running each combination ten times on the noisy cosine function estimation problem.

csa ds
simplex 0.0018 0.0019
grid 0.0019 0.0018

Table 2.2: Average cross-validation-cost of a the parameters found by the tabulated algo-
rithm combinations. Ten folds have been used for cross validation and the mean squared
error served as cost function.

2.1.3 The Bayesian Framework

Bayesian inference is a layered process. For classification the modified primal problem,

min
w,b,ec

Jp(w, ec) = µ
1

2
wTw + ζ

1

2

N∑
k=1

e2c,k (2.9)

such that yk[w
Tϕ(xk) + b] = 1− ec,k, k = 1, . . . , N (2.10)

is used which eventually leads to the dual space classifier6

y(x) = sign[
1

µ

N∑
k=1

αkK(x, xk) + b] (2.11)

It follows that the primal weight space parameters w, b the hyper-parameters µ, ζ and
finally the kernel parameters (if any) have to be determined. The hyper-parameters µ, ζ
are a different way to express γ, which was used in previous formulations. The relation
γ = ζ

µ
holds 7, which can be checked by substituting µ = 1. The unknowns will be found

following a three layered process. The first layer focuses on the weight vector and the bias
terms defining D = {xk, yk}Nk=1 and using Hi to denote different models i.e. radial basis
function kernels with different width. The first level uses the equation:8

p(w, b|D, µ, ζ,Hσ) =
p(D|w, b, µ, ζ,Hσ)

p(D|µ, ζ,Hσ)
p(w, b|µ, ζ,Hσ) (2.12)

With p(D|µ, ζ,Hσ) denoting the evidence which is determined by integrating over all
possible values of w, b and normalizing the result. w, b follow from the first level, which
is then used in the second layer to find µ and ζ by maximizing:

p(µ, ζ|D,Hσ) =
p(D|µ, ζ,Hσ)

p(D|Hσ)
p(µ, ζ|Hσ). (2.13)

6Support Vector Machines: Methods and Applications, Suykens et al., page 119
7Support Vector Machines: Methods and Applications, Suykens et al., page 118
8Support Vector Machines: Methods and Applications, Suykens et al., page 122

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 25

Figure 2.8: Bayesian inference schematic.

Which leads to the lowest third level where the kernel parameters are found:

p(Hσ|D) =
p(D|Hσ)

p(D)
p(Hσ). (2.14)

For function estimation the picture is similar, but a couple of small modifications have
to be made. For example assuming a hyper-parameter vector ζ1...N = [ζ1, . . . , ζN]. Using
Bayesian inference also makes it possible to compute error bounds. The model found from
the initial parameters σ2 = 0.01, γ = 10 is shown in figure 2.8. It is not perfect but all
training points lie indeed inside the confidence interval. Choosing an initial point closer
to the global optimum will probably results in better parameters σ and γ.
A good example for binary classification is the simplified iris data set. Using bayesian
inference the posterior class probabilities can be estimated. This has been done for a
classifier trained using γ = 5 and σ2 = 0.75. The result is shown in figure 2.10. The
purple indicates that the classifier will place points in this area in the positive class, while
data in the blue area will be placed in the negative class. Like it was observed earlier the
regularization parameter reduces model complexity for low values and stresses good fit to
the data for high values. The kernel density on the other hand stresses fit for small values
and model complexity reduction for larger widths.

Bayesian inference can also be used for input relevance detection. This is done using
radial basis function kernels with a different width for each kernel on the third level
of inference. Inputs which end up with small kernel width are successively removed
as small density is a strong indication for data memorization. Figure 2.11 shows three
different random inputs, while the first one was used to compute the noisy target function
fn. Clearly it is the most relevant input. And Baysian inference comes to the same
conclusion. Input selection can also be done using a layered cross-validation approach.
On way to do it is eliminate one input from the data and compute the value of the
cross-validation mean squared error. If each input is neglected once the most important
one will be the input for which the cost rose most when eliminated. In this example
the cost values 1.2928, 1.0031, 1.0083 where found when the first, second, and third input
where eliminated. It can be concluded that the first input is the most important is its
absence leads to higher cost as if any of the other inputs are missing. Another method
is to only keep the input in question, in this case the cost values 0.5132, 1.2910, 1.2578
where found. This confirms what was found earlier.

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 26

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

2

X

Y

LS-SVMRBF
γ=0.60756, σ2=0.01 and 95% (2σ) bands

Figure 2.9: Function estimation with parameters from Baysean inference and confidence
bounds.

2 3 4 5 6

0.5

1

1.5

2

2.5

X1

X
2

LS-SVMRBF
γ=5, σ2=0.75, with moderated output Ppos

Figure 2.10: Posterior class probabilities of an iris data classification svm

0 5
−2

0

2

0 5
−2

0

2

0 5
−2

0

2

Figure 2.11: Plots of three different input sequences and their corresponding output value.
With the generating function overlaid.

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 27

−10 −5 0 5 10

−1

0

1

2

X

Y

LS-SVMRBF
γ=381.3231,σ2=0.049184

−10 −5 0 5 10

−1

0

1

2

X

Y

LS-SVMRBF
γ=61180.2198,σ2=0.042458

Figure 2.12: Standard svm estimation and its robust version using Huber weights.

2.1.4 Robust Regression

In order to make svm regression more robust with respect to outliers in the data, a
weighted approach is used.9 The primal optimization problem is slightly modified:

min
w∗,b∗,e∗

Jp(w
∗, e∗) =

1

2
wT ∗

w + γ
1

2

N∑
k=1

vke
∗2
k (2.15)

Using the weight function10

vk =

1, if |ek/ŝ| ≤ c1
c2−|ek/ŝ|
c2−c1

, c1 ≤ if |ek/ŝ| ≤ c2

10−4, otherwise

. (2.16)

The constants c1 and c2 are typically chosen as c1 = 2.5 and c2 = 3 in the literature.
11 Finally ŝ must be a robust estimate of the standard deviation and ek is given as
ek = αk/γ. Figure 2.12 shows the difference between the standard approach and the
more robust weighted one, which handles the noise better. Other weight functions such
as logistic- or hampel-weights perform similarly.

2.2 Santa Fe laser Time series prediction

The santa fe laser competition data stems from a 1989 paper, physicists measured the
intensity of a unidirectional far infrared NH3 laser12. In physics these types of lasers
are modeled using so called Lorenz-Haken models. These models are chaotic systems,
with their Lyapunov exponent determining the speed by which trajectories starting at
similar initial conditions diverge. In practice the quality any approximation made using
Lorenz-Haken models depends on the initial condition and the constants used in the
model. Figure 2.13 shows a screen-shot from the original paper and a plot of the part of

9Support Vector Machines: Methods and Applications, Suykens et al., page 154
10Support Vector Machines: Methods and Applications, Suykens et al., page 155
11Support Vector Machines: Methods and Applications, Suykens et al., page 155
12U. Hübner et al, Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared

NH3 laser, http://journals.aps.org/pra/pdf/10.1103/PhysRevA.40.6354

http://journals.aps.org/pra/pdf/10.1103/PhysRevA.40.6354

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 28

0 500 1,000
0

100

200

300

Figure 2.13: Data set measured by Hübner et al. and the subset selected for the Santa
Fe competition.

the measurements selected for the santa-fe competition. Instead of trying to figure out a
good initial condition, as well as reliable parameters for a Lorenz-Haken model a ls-svm in
recurrent mode will be used to model this problem. In the autonomous case of a recurrent
model;

ŷk = f(ŷk−1, ŷk−2, ŷk−3, . . .) (2.17)

a recurrent support vector machine can be used to model the system dynamics, given a
starting value and windowed training data. Windowing the data means placing it into
a Hankel matrix, where the rows represent shifted versions of the input. The ls-svm
approach then uses the optimization problem: 13

min
w,b,e

Jp(w, e) =
1

2
wTw + γ

1

2

p+N∑
k=p+1

e2k (2.18)

such that yk − ek = wTϕ(yk−1k−p − ek−1k−p) + b k = k . . . N. (2.19)

The problem states that the approximation error ek = yk − ŷk should be reduced while
enforcing the recurrent model dynamics.
In order to choose the window size the sample autocorrelation function shown in fig-

ure 2.14 is considered. In the plot the autocorrelation values start to come close to the
confidence bounds around a lag of fifty samples. Therefore a window size of fifty will be
used as this shift covers the most significant samples. The plot on the right of figure 2.14
confirms this choice as reasonable when a window size of fifty samples is reached the error
has already fallen over three decades. From fifty to hundred the error falls only by about
one more decade. Thus choosing fifty as window size covers the most important part of
the information present.
Figure 2.15 shows recurrent svm approximation using automatically tuned hyper-parameters
found trough a coupled simulated annealing, simplex optimization algorithm pair. Ten
fold cross-validation was used in order to evaluate the absolute error cost function. Re-
sults using this cost function have been significantly better then using a mean square error
function or infinity norm based cost. A look at figure 2.16, verifies the hyper-parameter
choice determined by global optimization. It also reveals that 10 fold cross-validation is
a good indicator of prediction performance quality in this case. Another way to obtain a

13Support Vector Machines: Methods and Applications, Suykens et al., page 225

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 29

0 20 40 60 80 100

−0.5

0

0.5

1

lag

sa
m
p
le

au
to
co
rr
el
at
io
n

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

delay

lo
g
(m

se
)

Figure 2.14: Autocorrelation analysis of the training time-series shown with 95% confi-
dence bounds (left). Training set error using an svm trained using γ = 75.5, σ2 = 27.8
and a linearly increasing window size.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Figure 2.15: Recurrent ls-svm approxmation of scaled Santa-Fee using the hyper-
parameters γ = 158.5795, σ2 = 23.35559 (top) and γ = 75.4764, σ2 = 27.7826 (bottom)
found by using 10 fold cross-validation and numerical optimization techniques. The blue
curve shows the validation data set, the red one the svm-approximation. Yellow dots
indicate the error at any given point.

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 30

0 5

0

2

−3

−2

−1

log10(γ)

log10(σ
2)

lo
g
1
0
(m

se
)

0
5

0

2

−4

−2

0

2

log10(γ)
log10(σ

2)lo
g
1
0
(m

se
)

Figure 2.16: Plot of 10 fold cross-validation mean squared cost (left) and prediction mean
squared error (right) in the hyper-parameter space.

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

Figure 2.17: Prediction performance using the set of hyperparameters {γ = 270.0, σ2 =
30} as well as support vectors and bias term found using Bayesian inference.

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 31

−20 0 20 −50
0

50

20

40

Figure 2.18: Runge-Kutta (ode45) simulation of lorenz’ strange attractor.

good set of hyper-parameters is using Bayesian inference. Starting from an initial guess
of γ = 1000 and σ2 = 30 and improving these values going trough all three layers of
inference the parameters γ = 270.0 and σ2 = 30 as well as support vectors and bias term
are obtained. The performance of an svm using these values is shown in figure 2.17.

2.3 Lorenz equation estimation

In the previous experiment svms where able to predict about 200 samples with reasonable
accuracy. But the question remains what happens when more samples are predicted. Will
the solution deteriorate or will the svm continue to produce behavior that is characteristic
for the dynamical system under consideration? In order to answer this question the
lorenz-haken data used during the previous experiment is replaced by data from simulating
the well known Lorenz equations 14

Ẋ = a(Y −X) (2.20)

Ẏ = X(b− Z)− Y (2.21)

Ż = XY − cX (2.22)

With the constants a = 10.0, b = 28.0, and c = 8.0/4. Using the initial condition (2 1 20)T

leads to the solution shown in figure 2.18 after Runge-Kutta simulation with a maximum
time step of 0.01, which will serve as a data source. Before svm training the input data
points are flattened into a vector of the form vin = x1, y1, z1, x2, y2, . . . , which is then
windowed with a 333 sample sized window. The window size was determined by looking
at the autocorrelation function as described before. An svm with parameters γ = 100
and σ2 = 10 has been used. The parameters have been determined by trail and error.
Figure 2.20 shows the evolution of the solution for 3333 flattened data points or 1111
three dimensional points. The start and end of each curve are denoted by a circle and
square respectively. The ls-svm prediction does diverge from the Runge-Kutta solution,
but continues to exhibit typical Lorenz equation behavior. Figure 2.21 shows the same
experiment with an svm trained using γ = 146040 and σ2 = 10, which where found using
Bayesian inference. The larger γ places lesser emphasis on regularization, which leads
to a longer period of accurate prediction, at the cost of an complete breakdown of the
prediction process at roughly 1500 flattened samples.

14Wikipedia, https://de.wikipedia.org/wiki/Lorenz-Attraktor

https://de.wikipedia.org/wiki/Lorenz-Attraktor

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 32

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

0.2

0.4

0.6

0.8

1

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

0.5

1

Figure 2.19: LS-SVM fit to training data and recurrent prediction results in flattened
form. Note how the three dimensionality of the input appears in the error.

0.5

1

0
0.2

0.4
0.6

0

0.5

Figure 2.20: LS-SVM prediction (red) and Runge-Kutta simulation data (blue).

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 33

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

0.2

0.4

0.6

0.8

1

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.5

1

Figure 2.21: Bayesian inference parameter LS-SVM fit to training data and recurrent
prediction results in flattened form. Note how the three dimensionality of the input
appears in the error.

0.5

1

0
0.2

0.4
0.6

0.2

0.4

0.6

Figure 2.22: Prediction results with Bayesian inference parameters.

SESSION 2. FUNCTION ESTIMATION AND TIME-SERIES PREDICTION 34

0 200 400 600

0

0.5

1

Lag

S
am

p
le

A
u
to
co
rr
el
at
io
n

Flat autocorrelation

0 200 400 600

0

1

Lag

S
am

p
le

A
u
to
co
rr
el
at
io
n

x autocorrelation

0 200 400 600

0

0.5

1

Lag

S
am

p
le

A
u
to
co
rr
el
at
io
n

y autocorrelation

0 200 400 600

−0.5

0

0.5

1

Lag

S
am

p
le

A
u
to
co
rr
el
at
io
n

z autocorrelation

Figure 2.23: Autocorrelation of the flattened three dimensional as well as x,y and z related
training data sets.

2.3.1 A Lorenz SVM commitee

The comparison of the flattened autocorrelation with the single dimension couterparts
shown in figure 2.23 reveals that possibly the three dimensions are best treated separately.
Therefore an attempt to train a Lorenz svm committee-network has been made. One
svm per dimension is trained, which means one svm per Lorenz equation. The current
version of the lssvm toolbox requires an X : N x d matrix with the inputs of the

training data as well as an Y : N x 1 vector with the outputs of the training

data. 15 Which means no tensor inputs are allowed. As the columns of the input are
required for the windowing a flattened version of the 3 dimensional input has to be used
as a workaround. In order to meet the length requirement the unwanted dimensions of the
output have been padded with zeros. The flattened predictions have then been added up
and reshaped into their original three dimensional form. But unfortunately this approach
did not improve results. This is probably due to the fact that zero padding the unwanted
output dimensions introduces new false information, from which the Committee-network
does not recover.

15LS-SVMlab Toolbox Users Guide version 1.8, K. De Brabanter et al. page 104, http://www.esat.
kuleuven.be/sista/lssvmlab/downloads/tutorialv1_8.pdf

http://www.esat.kuleuven.be/sista/lssvmlab/downloads/tutorialv1_8.pdf
http://www.esat.kuleuven.be/sista/lssvmlab/downloads/tutorialv1_8.pdf

Session 3

Unsupervised Learning and sparsity

3.1 Kernel principle component analysis

Linear component analysis works by finding the main axes which describe a given data
set best. Linear combinations of these principal component vectors can then be used to
recreate each point in the original data set. In practice linear PCA operates on the mean:

x̄ =
1

N

N∑
k=1

xk. (3.1)

Next from each data point’s deviation from the mean the covariance matrix is computed:1

Σ =
1

N − 1

N∑
k=1

(xk − x̄)(xk − x̄)T (3.2)

The linear principle components are defined to be the eigenvectors u of the covariance
matrix Σ;

Σu = λu. (3.3)

If the eigenvectors are stored in a matrix U ,

x = x̄+Ub (3.4)

can be used to recombine the prinipal components to match points close to the original
data set. By enforcing limits on the weight vector b the closeness of remaps to the original
data can be controlled. 2 Another important application of linear PCA is dimensionality
reduction. An reduction of input dimension is achieved by considering the remapped data,

zi = uT
i (x− x̄i) i = 1, . . . ,m. (3.5)

With m < N , the dimension is reduced by neglecting the smallest eigenvalues and their
corresponding eigenvectors. This method allows to reduce the input data complexity,
while keeping the information loss as small as possible. Figure 3.1 shows a classical
coordinate system consisting of the principal axes centered at the mean. The data set

1Support Vector Machines: Methods and Applications, Suykens et al., page 20
2Active Shape Models - Their training and Application, Cootes et al, pages 43,44 and 49

35

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 36

−2 0 2

−2

0

2

x

y

Linear PCA

−2 0 2
−2

0

2

x

y

Kernel PCA

Figure 3.1: Linear PCA showing two principal components(left) and kernel PCA (right)
. The mean sample value x̄ is indicated by a square at (0, 0) in both plots.

under consideration is nonlinear, therefore the linear approach fails to capture essential
information present in the data.

On the right of figure 3.1 the result of using a non-linear approach is shown. The
kernel-PCA is able to track the nonlinear lines despite the presence of progressively in-
creasing noise. The linear PCA can also be formulated as an optimization problem 3:

max
w

Var(wTx) = Cov(wTx,wTx) ' wTCw (3.6)

which is valid, when considering zero mean data and using C = 1
N

∑N
k=1 xkx

T
k . Taking

into account the constraint wTw = 1 leads to the Lagrangian:

L(w;λ) = 1

2
wTCw − λ(wTw − 1) (3.7)

The solution of the problem will be found where the gradient of the Lagrangian is zero
5L = 0. Using this equation yields the eigenvalue problem,

Cw = λw. (3.8)

Which can be solved as discussed before. The kernel case is an extension of the linear
case 4 the mean equivalent is defined by,

µ̂ =
1

N

N∑
k=1

ϕ(xk). (3.9)

The ls-svm approach to the problem looks at:

max
w,e

Jp(w, e) = γ
1

2

N∑
k=1

e2k −
1

2
wTw (3.10)

such that ek = wT (ϕ(xk − µ̂)), k = 1, . . . , N (3.11)

3Support Vector Machines: Methods and Applications, Suykens et al., page 202
4Support Vector Machines: Methods and Applications, Suykens et al., page 211

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 37

1 2 3 4 5 6
20

40

60

80

100

Figure 3.2: Plot of the first six eigenvalues of the centered kernel matrix.

Trough an analysis of the optimality conditions once more an equivalent eigenvalue prob-
lem can be found,

Ωcα = λα. (3.12)

With λ = 1
γ
and αk = γek. And the kernel matrix defined by,

Ωc;k,l = (ϕ(xk)− µ̂)T (ϕ(xl)− µ̂). (3.13)

Which can be found by using the Kernel trick, after that the analysis can proceed like it
did in the linear case. The projected space is given by:

z(x) = wT (ϕ(x)− µ̂). (3.14)

This space is also called target space an is interpreted as en error where the target is zero.
A plot of the kernel matrix eigenvalues associated with the toy-problem under consider-
ation is shown in figure 3.2. The plots in 3.3 show the projections of the kernel matrix
onto the first six principal components. It can be observed that the projection quality
decreases alongside the relevance of the associated eigenvalue. The actual de-noising is
done using:

x̄ = h(z) (3.15)

Where the function h must minimize:

min
N∑
k=1

‖xk − h(zk)‖2. (3.16)

The function h is generally an MLP trained using Bayesian learning. 5 But solving an the
unconstrained optimization problem using a specified kernel function is also possible.

3.2 Handwritten digit denoising

To learn more about the two techniques, both will be applied to a digit recognition problem
using the supplied script digitsdn. The original data set consists of handwritten numbers
with approximately 20 records per number from 0 to 9. Each image has a resolution of
16 by 15. Two test sets with one image per numeral are also included. The images are

5Support Vector Machines: Methods and Applications, Suykens et al., page 213

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 38

−2 0 2

−2

0

2

first component

−2 0 2

−2

0

2

second component

−2 0 2

−2

0

2

third component

−2 0 2

−2

0

2

fourth component

−2 0 2

−2

0

2

fifth component

−2 0 2

−2

0

2

sixth component

Figure 3.3: Plots of the kernel matrix projections using each of the six computed principal
components. The quality of the plots decreases together with the relative importance of
the associated eigenvalue.

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 39

Figure 3.4: The principal components using linear PCA (first row). Kernel PCA principal
components (second row) and projections using the first principal components (third row).

flattened into row vectors and stored in an input matrix with one image The top rows of
the plots in figure 3.5 show the noise free data of the first test set. The second row noisy
versions of the same hand written numbers. In the non-linear case the rbf-kernel-function
density is initialized using the approximation dimension times the mean of the variance
in the training set. Figure 3.4 shows the principal components found by using linear
and kernel pca on the large training data set. These principal components will be used
later to clean the noisy numerals in the test set. The plots reveal that a seven shaped
principal component is dominant in the kernel as well as the linear case. All rows after the
second row in figure 3.5 show efforts to reconstruct de-noised versions of the input using
an increasing number of principal components. If few components are used the dominant
seven shaped vector takes over the reconstruction quite often. If a more complete model
with more components is used this does not happen anymore in the linear as well as the
nonlinear case. The crucial difference between the two cases is that in the linear case
the noise reduction decreases when more principal components are used, resembling the
original image more and more. In the kernel case noise reduction gets better each time
moving more towards a prototypical representation of the input. This behavior probably
stems from the fact that the kernel case is able to adapt better to non-linear number
shapes. The mis-representation of the number seven in the can be fixed by increasing
the rbf-kernel width, the result is shown in figure 3.6. Unfortunately increasing the width
also increases the noise, so a good trade off is required.

3.3 Spectral clustering

In this section a problem consisting of two interlocked rings as shown in figure 3.7 will
be analyzed. Two the human eye the grouping of points into two independent rings is

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 40

Figure 3.5: Digit de-noising using kernel (left) and linear PCA (right).

Figure 3.6: The kernel pca process using an rbf function with larger width σ2.

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 41

−1

0

1 −1
0

1

0

0.5

1

Figure 3.7: The training data set consisting of two interlocked rings.

immediately apparent. Spectral clustering is an algorithm, with which a computer can
find these two classes. As the data set does not have annotations, this is an unsupervised
learning algorithm. Spectral clustering methods use a kernel function as a similarity mea-
sure. The largest eigenvectors of a rescaled kernel-matrix are computed. The eigenvectors
corresponding to the three largest eigenvalues are computed the second largest will con-
tain the clustering information in the sign. If more then three eigenvectors are found the
one containing the clustering information will be the smallest with an even number, if
one starts counting with one at the largest vector. It must be noted that in this case the
eigenvalues are all very close to one, so this observation cannot necessarily be generalized.
Figure 3.10 shows the results of using classification information from the second largest
eigenvector when computing the first three eigenvectors using Lanczos’ iterative method.
It can be observed that for the two smaller values σ2 = 0.001 and σ2 = 0.01 the method is
able classify the two rings correctly. For the larger value σ2 = 0.1 the rbf-kernel becomes
to large, which results in incorrect linear looking classification.

3.4 Fixed-size LS-SVM

As the number of data points increases working in the dual space becomes harder and
harder, because the dimension of the unknown support vectors depends on the number
of input data points α ∈ RN . The primal problem is better suited for many input data
points as the unknown primal weights vector length is determined by the dimension of the
input data w ∈ Rn. In other words large data set problems should be solved in the primal
space, while the dual space should be used if the input data is high dimensional. 6 When
SVMs are trained in the primal space, they are called fixed size svms. For the primal
space case the kernel trick made it possible to train svms without explicitly knowing which
non-linear function mapped to the feature space. When working in the primal space ϕ(x)
must be evaluated. This is only simple for linear classifiers, where ϕ(x) = x. In the
non-linear case the Nyström method is required to approximate the nonlinear mapping
ϕ(x), the general idea is to choose a a fixed subsampled kernel matrix size M . Typically
M is a lot smaller then the true Kernel-matrix size M � N7 This smaller kernel matrix

6Support Vector Machines: Methods and Applications, Suykens et al., page 174
7Support Vector Machines: Methods and Applications, Suykens et al., page 175

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 42

−1
0

1

−1

0
1

0

0.5

1

Clustering results

−0.4−0.2 0 0.2 0.4

−0.5

0

0.5

Subspace projections

Figure 3.8: Spectral clustering and subspace projections using σ2 = 0.001.

−1
0

1

−1

0
1

0

0.5

1

Clustering results

−1 0 1

−2

0

2

Subspace projections

Figure 3.9: Spectral clustering and subspace projections using σ2 = 0.01.

−1
0

1

−1

0
1

0

0.5

1

Clustering results

−5 0 5

−5

0

5

Subspace projections

Figure 3.10: Spectral clustering and subspace projections using σ2 = 0.1.

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 43

0 20 40 60 80 100
0

1

2

iterations

H
r

Figure 3.11: The value of the entropy function for an optimization process of a subset of
10 values drawn from the normal distribution N (0, 22)

−10 −5 0 5
−10

−5

0

5

10

original space

−4
−2

0
2

4

−2
0

2

−2
0

2

feature space

Figure 3.12: Feature space reconstruction

is then approximated using a subset of the input data. The computed eigenvalues and
eigenvectors found from this set are then used as an approximation to the true large
version of the matrix. Instead of choosing these support vectors randomly the entropy
function,8

Hr = − log

∫
p(x)2dx (3.17)∫

p(x)2dx =
1

N2
1TΩ1 (3.18)

is used. Starting from a random fixed size pool of support vectors a selected vector is
replace with a value from the training set. If the entropy increases the datum is kept in
the support vector set. If the entropy function does not increase the new value is rejected
and the old one is kept in the set. This procedure is repeated until the entropy function
does not increase sufficiently anymore or a maximum number of iterations is reached.
The reduced kernel matrix can be determined from the fixed set. After estimating its
eigenfunction w and b are determined. Figure 3.11 shows the entropy function over
hundred iterations of a ten vector subset from a normally distributed data-set. Given
this optimized subset the nonlinear mapping can be approximated as shown in figure 3.12

8Support Vector Machines: Methods and Applications, Suykens et al., page 181

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 44

FS-LSSVM SV-l0-norm

0.1

0.2

E
rr
or

es
ti
m
at
e

Error Comparison

FS-LSSVM SV-l0-norm
0

50

100

150

S
V

es
ti
m
at
e

Number of Support Vectors

FS-LSSVM SV-l0-norm

35

40

T
im

e
es
ti
m
at
e

Time comparison

Figure 3.13: Classical fixed size svm and l0 reduced version comparison for classification
on the Wisconsin breast cancer dataset.

using the Nyström method, if alongside the selected inputs a kernel function and its
parameters are chosen.

3.4.1 Sparsity and the l0-norm

Sparsity is a desirable property of trained support vector machines. In the dual space an
ls-svm classifier is sparse if many support vectors are zero. 9 When evaluating the classifier
only the non-zero vectors have to be taken into account, making the computation more
efficient. For fixed size ls-svms the primal problem is considered, the notion of sparsity
translates into a smaller representation of the basis given by:

w =
k=1∑
N

αkϕ(xk) (3.19)

A good method of determining suitable subset of the input space {ϕ(xk)}Nk=1, could for
example be the entropy selection method discussed earlier. The determined subset could
then serve as a way to approximate a sparse w. This goal is formulated using the l0 norm

min
w

‖w‖0 = ‖w1‖0 + ‖w2‖0 + · · ·+ ‖wN‖0 (3.20)

9Support Vector Machines: Methods and Applications, Suykens et al., page 33

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 45

Figure 3.14: Kernel based and linear pca de-noising of very noise data.

which is equivalent to minimizing the count of non-zero elements in the vector.10 A
first experiment using this method of producing sparsity is use for classification of the
comparatively small Wisconsin data set. Results from running fslssvm script are shown
in figure 3.13. The error comparison shows a slightly elevated median for the sparse
version, probably due to the random nature of the input set reduction process bad outliers
in terms of error exist. The figure also reveals, that the l0 norm minimization process
significatly reduced the number of support vectors, while it does not lead to a significant
increase in training time.

3.5 Kernel and linear PCA-de-noising on high noise

data

In this section an extreme noise example is considered, where the human eye has trouble
identifying the characters correctly. Figure 3.14 shows the input data as well as the
performance of a low sigma kernel-pca in comparison to a linear one. The trade off that
came with choosing the kernel width σ2 was observed earlier. A too large σ2 led to
correct predictions but little noise reduction. Smaller width sometimes ended up clear
but incorrect letter representations. In the case shown in figure 3.14 a small σ2 had to
be chosen in order to deal with the very noisy input. Given the low quality of the input
the kernel-PCA does an incredibly good job at de-noising. It does confuse 3 with 5 and
6 with 2 however. In the linear case this does not happen but it does not come close in
terms of noise reduction.

10David Wipf and Bhaskar Rao, l0-norm Minimization for Basis Selection

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 46

2 4 6
0

1

2

3

·104

Figure 3.15: Histogram of the statlog dataset’s training data class distribution.

3.6 Shuttle dataset-analysis

The statlog/shuttle dataset, contains 58000 ten dimensional row data vectors. With the
last entry in each row indicating the class to which the data point belongs. Traditionally
the first 43500 data rows are used for training and the last 14500 data points are retained
for testing. Figure 3.15 shows the shuttle-dataset’s class distribution. About eighty
percent of the data belongs to the first class. A modified version of the fslssvm script

has been used with the shuttle data set as an input. The aim here is again classification,
but its must be noted that the shuttle dataset is much larger than the Wisconsin-cancer
set, it has 58000 data points while the cancer set only contains 682 data points. The results
of the machine architecture comparison are shown in figure 3.16. On this larger data
set the difference in terms of the error estimate become negligible. Quite a significance
difference in terms of sparsity persist however, while the training time does not increase
significantly.

3.7 California dataset-analysis

The California housing regression problem. Using windowed input data with a delay of
1032, which equals a data size to delay ratio of 20. The same ratio has been successfully
applied to the Santa-fe estimation problem. The same experiment is repeated for a re-
gression scenario using the California housing data set. Figure 3.17 shows the findings. In
this case the a more sparse solution can only be found in some cases. Success in finding
a sparse representation probably depends on luck with the random subset the entropy
selection method works with.

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 47

FS-LSSVM SV-l0-norm

0.21

0.21

0.21

E
rr
or

es
ti
m
at
e

Error Comparison

FS-LSSVM SV-l0-norm
0

500

1,000

S
V

es
ti
m
at
e

Number of Support Vectors

FS-LSSVM SV-l0-norm

0.8

1

1.2

1.4

1.6
·104

Time comparison

Figure 3.16: Fixed size svm and l0 svm comparison for classification on the nasa shuttle
dataset.

SESSION 3. UNSUPERVISED LEARNING AND SPARSITY 48

FS-LSSVM SV-l0-norm

0.9

1

1.1

1.2

E
rr
or

es
ti
m
at
e

Error Comparison

FS-LSSVM SV-l0-norm
839

840

841
S
V

es
ti
m
at
e

Number of Support Vectors

FS-LSSVM SV-l0-norm

2,500

3,000

3,500

T
im

e
es
ti
m
at
e

Time comparison

Figure 3.17: Fixed size svm and l0 svm comparison for regression on the california-housing
dataset.

	Classification
	Geometric construction of a classifier
	Vapnik Support Vector machines
	Least Squares Support Vector machines
	RBF kernel parameter selection for the iris data set
	Polynomial kernel parameter selection for the iris data set
	The impact of different validation methods
	Automatic tuning
	The roc-curve
	Full complexity iris data set classification

	The Ripley Data-Set
	Breast Cancer Data-set
	Diabetes Database

	Function Estimation and Time-series Prediction
	Regression Support Vector Machines.
	Sum of cosines
	Hyper-parameter tuning
	The Bayesian Framework
	Robust Regression

	Santa Fe laser Time series prediction
	Lorenz equation estimation
	A Lorenz SVM commitee

	Unsupervised Learning and sparsity
	Kernel principle component analysis
	Handwritten digit denoising
	Spectral clustering
	Fixed-size LS-SVM
	Sparsity and the l0-norm

	Kernel and linear PCA-de-noising on high noise data
	Shuttle dataset-analysis
	California dataset-analysis

